1Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 2Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China 3Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract:Depositing magnetic insulators on graphene has been a promising route to introduce magnetism via exchange proximity interaction in graphene for future spintronics applications. Molecule-based magnets may offer unique opportunities because of their synthesis versatility. Here, we investigate the magnetic proximity effect of epitaxial iron phthalocyanine (FePc) molecules on high-quality monolayer and bilayer graphene devices on hexagonal boron nitride substrates by probing the local and nonlocal transport. Although the FePc molecules introduce large hole doping effects combined with mobility degradation, the magnetic proximity gives rise to a canted antiferromagnetic state under a magnetic field in the monolayer graphene. On bilayer graphene and FePc heterostructure devices, the nonlocal transport reveals a pronounced Zeeman spin-Hall effect. Further analysis of the scattering mechanism in the bilayer shows a dominated long-range scattering. Our findings in graphene/organic magnetic insulator heterostructure provide a new insight for use of molecule-based magnets in two-dimensional spintronic devices.
Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, and Chen C T 2016 Nat. Mater.15 711
[16]
Wu Y F, Song H D, Zhang L, Yang X, Ren Z, Liu D, Wu H C, Wu J, Li J G, Jia Z, Yan B, Wu X, Duan C G, Han G, Liao Z M, and Yu D 2017 Phys. Rev. B95 195426
Avvisati G, Cardoso C, Varsano D, Ferretti A, Gargiani P, and Betti M G 2018 Nano Lett.18 2268
[21]
Gamou H, Shimose K, Enoki R, Minamitani E, Shiotari A, Kotani Y, Toyoki K, Nakamura T, Sugimoto Y, Kohda M, Nitta J, and Miwa S 2020 Nano Lett.20 75
[22]
de la T B, Švec M, Hapala P, Redondo J, Krejčí O, Lo R, Manna D, Sarmah A, Nachtigallová D, Tuček J, Błoński P, Otyepka M, Zbořil R, Hobza P, and Jelínek P 2018 Nat. Commun.9 2831
[23]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J 2010 Nat. Nanotechnol.5 722
Li C, Komatsu K, Bertrand S, Clavé G, Campidelli S, Filoramo A, Guéron S, and Bouchiat H 2016 Phys. Rev. B93 045403
[29]
Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, and Geim A K 2011 Science332 328
[30]
Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro N A H, and Özyilmaz B 2014 Nat. Commun.5 4875
Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, and Jarillo-Herrero P 2014 Nature505 528
[37]
Li Y, Amado M, Hyart T, Mazur G P, Risinggård V, Wagner T, McKenzie-Sell L, Kimbell G, Wunderlich J, Linder J, and Robinson J W A 2020 Phys. Rev. B101 241405