1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
Abstract:We report on low-temperature electron transport properties of MnSb$_{2}$Te$_{4}$, a candidate of ferrimagnetic Weyl semimetal. Long-range magnetic order is manifested as a nearly square-shaped hysteresis loop in the anomalous Hall resistance, as well as sharp jumps in the magnetoresistance. At temperatures below 4 K, a ${\rm ln}T$-type upturn appears in the temperature dependence of longitudinal resistance, which can be attributed to the electron-electron interaction (EEI), since the weak localization can be excluded by the temperature dependence of magnetoresistance. Although the anomalous Hall resistance exhibits a similar ${\rm ln}T$-type upturn in the same temperature range, such correction is absent in the anomalous Hall conductivity. Our work demonstrates that MnSb$_{2}$Te$_{4}$ microflakes provide an ideal system to test the theory of EEI correction to the anomalous Hall effect.
Throughout this work, $R_{xx}$ refers to the sheet longitudinal resistance per square. The corresponding longitudinal resistivity is $\rho_{xx}$=$R_{xx}t$, where $t$ is the sample thickness
This approximation is valid because $R_{xx}$ is two orders of magnitude larger than $R_{\rm AH }$in MnSb$_{2}$Te$_{4}$. In this work, the AH conductivity $\sigma_{\mathrm{AH}}$ refers to the sheet conductance per square, and hence has a dimension of inverse resistance. It is convenient for discussing the physics at two dimensions.