Abstract:We investigate the spin Hall magnetoresistance (SMR) in all-antiferromagnetic heterostructures $\alpha$-Fe$_{2}$O$_{3}$/Cr$_{2}$O$_{3}$ with Pt contacts. When the temperature is ultralow ($ < $ 50 K), the spin current generated in the Pt layer cannot be transmitted through Cr$_{2}$O$_{3}$ ($t = 4$ nm), and the SMR is near zero. Meanwhile, when the temperature is higher than the spin fluctuation temperature $T_{\rm F}$ ($\approx $ 50 K) of Cr$_{2}$O$_{3}$ and lower than its Néel temperature $T_{\rm N}$ ($\approx $ 300 K), the spin current goes through the Cr$_{2}$O$_{3}$ layer and is reflected at the $\alpha$-Fe$_{2}$O$_{3}$/Cr$_{2}$O$_{3}$ interface; an antiferromagnetic (negative) SMR is observed. As temperature increases higher than $T_{\rm N}$, paramagnetic (positive) SMR mainly arises from the spin current reflection at the Cr$_{2}$O$_{3}$/Pt interface. The transition temperatures from negative to positive SMR are enhanced with increasing Cr$_{2}$O$_{3}$ layer thickness, accompanied by the absence of SMR signals when $t = 10$ nm. Such a tunable SMR builds a bridge between spin transport and structures. It also enriches antiferromagnetic spintronics.
Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, and Saitoh E 2013 Phys. Rev. Lett.110 206601
[3]
Hou D, Qiu Z, Barker J, Sato K, Yamamoto K, Vélez S, Gomez-Perez J M, Hueso L E, Casanova F, and Saitoh E 2017 Phys. Rev. Lett.118 147202
Chen Y, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, and Bauer G E W 2013 Phys. Rev. B87 144411
[6]
Zhang X, Luo T, Hu X, Guo J, Lin G, Li Y, Liu Y, Zhang X, Luo T, Hu X, Guo J, Lin G, Li Y, Liu Y, Li X, Ge J, Xing Y, Zhu Z, Gao P, Sun L, and Wang J 2019 Chin. Phys. Lett.36 057402
[7]
Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Liu L P, Zhang S L, Zhang Y, Li H H, Wang B M, Wu Y H, Zhang S, and Li R W 2016 Appl. Phys. Lett.109 032410
[8]
Baldrati L, Ross A, Niizeki T, Schneider C, Ramos R, Cramer J, Gomonay O, Filianina M, Savchenko T, Heinze D, Kleibert A, Saitoh E, Sinova J, and Kläui M 2018 Phys. Rev. B98 024422
Cheng Y, Yu S S, Ahmed A S, Zhu M L, Rao Y, Ghazisaeidi M, Hwang J, and Yang F Y 2019 Phys. Rev. B100 220408
[26]
Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H, and Pan F 2021 Nat. Mater.20 800
Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprägs S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L, Gupta A, Chen Y T, Bauer G E W, Saitoh E, and Goennenwein S T B 2013 Phys. Rev. B87 224401
[29]
Aqeel A, Vlietstra N, Heuver J A, Bauer G E W, Noheda B, van Wees B J, and Palstra T T M 2015 Phys. Rev. B92 224410
[30]
Wang Y, Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J, and Yang H 2019 Science366 1125