Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States
Kun Luo1, Wei Chen1,2*, Li Sheng1,2, and D. Y. Xing1,2
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract:Helical edge states are the hallmark of the quantum spin Hall insulator. Recently, several experiments have observed transport signatures contributed by trivial edge states, making it difficult to distinguish between the topologically trivial and nontrivial phases. Here, we show that helical edge states can be identified by the random-gate-voltage induced $\varPhi_0/2$-period oscillation of the averaged electron return probability in the interferometer constructed by the edge states. The random gate voltage can highlight the $\varPhi_0/2$-period Al'tshuler–Aronov–Spivak oscillation proportional to $\sin^2(2\pi\varPhi/\varPhi_0)$ by quenching the $\varPhi_0$-period Aharonov–Bohm oscillation. It is found that the helical spin texture induced $\pi$ Berry phase is key to such weak antilocalization behavior with zero return probability at $\varPhi=0$. In contrast, the oscillation for the trivial edge states may exhibit either weak localization or antilocalization depending on the strength of the spin-orbit coupling, which has finite return probability at $\varPhi=0$. Our results provide an effective way for the identification of the helical edge states. The predicted signature is stabilized by the time-reversal symmetry so that it is robust against disorder and does not require any fine adjustment of system.
(Magnetotransport phenomena; materials for magnetotransport)
引用本文:
. [J]. 中国物理快报, 2021, 38(11): 110302-.
Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States. Chin. Phys. Lett., 2021, 38(11): 110302-.
Nguyen B M, Kiselev A A, Noah R, Yi W, Qu F, Beukman A J A, de Vries F K, van Veen J, Nadj-Perge S, Kouwenhoven L P, Kjaergaard M, Suominen H J, Nichele F, Marcus C M, Manfra M J, and Sokolich M 2016 Phys. Rev. Lett.117 077701
[17]
Nichele F, Suominen H J, Kjaergaard M, Marcus C M, Sajadi E, Folk J A, Qu F, Beukman A J A, de Vries F K, van Veen J, Nadj-Perge S, Kouwenhoven L P, Nguyen B M, Kiselev A A, Yi W, Sokolich M, Manfra M J, Spanton E M, and Moler K A 2016 New J. Phys.18 083005
[18]
Mueller S, Mittag C, Tschirky T, Charpentier C, Wegscheider W, Ensslin K, and Ihn T 2017 Phys. Rev. B96 075406
de Vries F K, Timmerman T, Ostroukh V P, van Veen J, Beukman A J A, Qu F, Wimmer M, Nguyen B M, Kiselev A A, Yi W, Sokolich M, Manfra M J, Marcus C M, and Kouwenhoven L P 2018 Phys. Rev. Lett.120 047702
[21]
de Vries F K, Sol M L, Gazibegovic S, Veld R L M O H, Balk S C, Car D, Bakkers E P A M, Kouwenhoven L P, and Shen J 2019 Phys. Rev. Res.1 032031