Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits
Wen Zheng1† , Jianwen Xu1† , Zhuang Ma1 , Yong Li1 , Yuqian Dong1 , Yu Zhang1 , Xiaohan Wang1 , Guozhu Sun2 , Peiheng Wu2 , Jie Zhao1 , Shaoxiong Li1 , Dong Lan1* , Xinsheng Tan1* , and Yang Yu1*
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract :Topology played an important role in physics research during the last few decades. In particular, the quantum geometric tensor that provides local information about topological properties has attracted much attention. It will reveal interesting topological properties but have not been measured in non-Abelian systems. Here, we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation. By manipulating the Hamiltonian with periodic drivings, we simulate the Bernevig–Hughes–Zhang model and obtain the quantum geometric tensor from interference oscillation. In addition, we reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
收稿日期: 2022-08-09
Express Letter
出版日期: 2022-09-08
引用本文:
. [J]. 中国物理快报, 2022, 39(10): 100202-100202.
Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits. Chin. Phys. Lett., 2022, 39(10): 100202-100202.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/39/10/100202
或
https://cpl.iphy.ac.cn/CN/Y2022/V39/I10/100202
[1] Nakahara M 2018 Geometry, Topology and Physics (New York: CRC Press)
[2] Wu T T and Yang C N 1975 Phys. Rev. D 12 3845
[3] Wu T T and Yang C N 1976 Nucl. Phys. B 107 365
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Goldman N, Juzeliūnas G, Öhberg P, and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[7] Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[8] Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2018 Adv. Phys. 67 253
[9] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[10] Buluta I and Nori F 2009 Science 326 108
[11] Bliokh K Y, Smirnova D, and Nori F 2015 Science 348 1448
[12] Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289
[13] Campos Venuti L and Zanardi P 2007 Phys. Rev. Lett. 99 095701
[14] Ma Y Q, Chen S, Fan H, and Liu W M 2010 Phys. Rev. B 81 245129
[15] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[16] Wen X G 1991 Phys. Rev. B 44 2664
[17] Wen X G 2017 Rev. Mod. Phys. 89 041004
[18] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[19] Pachos J, Zanardi P, and Rasetti M 1999 Phys. Rev. A 61 010305(R)
[20] Bohm A, Mostafazadeh A, Koizumi H, Niu Q, and Zwanziger J 2003 The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Berlin: Springe-Verlag)
[21] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[22] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301(R)
[23] Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P, and Rauch H 2009 Phys. Rev. Lett. 102 030404
[24] Zhao P Z, Cui X D, Xu G F, Sjöqvist E, and Tong D M 2017 Phys. Rev. A 96 052316
[25] Wootters W K 1981 Phys. Rev. D 23 357
[26] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[27] Zanardi P and Paunković N 2006 Phys. Rev. E 74 031123
[28] Zanardi P, Giorda P, and Cozzini M 2007 Phys. Rev. Lett. 99 100603
[29] Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press)
[30] Carollo A, Valenti D, and Spagnolo B 2020 Phys. Rep. 838 1
[31] Dey A, Mahapatra S, Roy P, and Sarkar T 2012 Phys. Rev. E 86 031137
[32] Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60
[33] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[34] Ray M W, Ruokokoski E, Kandel S, Möttönen M, and Hall D S 2014 Nature 505 657
[35] Palumbo G and Goldman N 2018 Phys. Rev. Lett. 121 170401
[36] Tan X, Zhang D W, Zheng W, Yang X, Song S, Han Z, Dong Y, Wang Z, Lan D, Yan H, Zhu S L, and Yu Y 2021 Phys. Rev. Lett. 126 017702
[37] Chen M, Li C, Palumbo G, Zhu Y Q, Goldman N, and Cappellaro P 2022 Science 375 1017
[38] Zhang S C and Hu J 2001 Science 294 823
[39] Yang C N 1978 J. Math. Phys. 19 320
[40] Sugawa S, Salces-Carcoba F, Perry A R, Yue Y, and Spielman I B 2018 Science 360 1429
[41] Kolodrubetz M 2016 Phys. Rev. Lett. 117 015301
[42] Weisbrich H, Klees R, Rastelli G, and Belzig W 2021 PRX Quantum 2 010310
[43] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[44] Duan L M, Cirac J I, and Zoller P 2001 Science 292 1695
[45] Sugawa S, Salces-Carcoba F, Yue Y, Putra A, and Spielman I B 2021 npj Quantum Inf. 7 144
[46] Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[47] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035
[48] Xu G F, Zhang J, Tong D M, Sjöqvist E, and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[49] Oreshkov O, Brun T A, and Lidar D A 2009 Phys. Rev. Lett. 102 070502
[50] Wu L A, Zanardi P, and Lidar D A 2005 Phys. Rev. Lett. 95 130501
[51] Ozawa T and Goldman N 2018 Phys. Rev. B 97 201117(R)
[52] Tan X, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D, Yang X, Song S, Han Z, Li Z, Dong Y, Yu H F, Yan H, Zhu S L, and Yu Y 2019 Phys. Rev. Lett. 122 210401
[53] Yu M et al. 2019 Natl. Sci. Rev. 7 254
[54] Weisbrich H, Rastelli G, and Belzig W 2021 Phys. Rev. Res. 3 033122
[55] McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. Appl. 6 064007
[56] Reagor M et al. 2018 Sci. Adv. 4 eaao3603
[57] Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X, and Yu Y 2020 Phys. Rev. Appl. 13 064012
[58] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[59] Lv Q X, Du Y X, Liang Z T, Liu H Z, Liang J H, Chen L Q, Zhou L M, Zhang S C, Zhang D W, Ai B Q, Yan H, and Zhu S L 2021 Phys. Rev. Lett. 127 136802
[60] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[61] Zhang A 2022 Chin. Phys. B 31 040201
[62] von Gersdorff G and Chen W 2021 Phys. Rev. B 104 195133
[63] Mera B, Zhang A, and Goldman N 2022 SciPost Phys. 12 018
[64] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[65] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[66] Sheng L, Sheng D N, Ting C S, and Haldane F D M 2005 Phys. Rev. Lett. 95 136602
[67] Sheng D N, Weng Z Y, Sheng L, and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[68] Sheng L, Li H C, Yang Y Y, Sheng D N, and Xing D Y 2013 Chin. Phys. B 22 067201
[1]
. [J]. 中国物理快报, 2022, 39(3): 30301-.
[2]
. [J]. 中国物理快报, 2017, 34(7): 70203-.
[3]
. [J]. 中国物理快报, 2016, 33(09): 90301-090301.
[4]
. [J]. 中国物理快报, 2016, 33(03): 30301-030301.
[5]
. [J]. Chin. Phys. Lett., 2013, 30(1): 10304-010304.
[6]
XIA Li-Li;CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems [J]. 中国物理快报, 2010, 27(8): 80201-080201.
[7]
JIA Xiao-Yu;WANG Na. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation [J]. 中国物理快报, 2009, 26(8): 80201-080201.
[8]
CAO Li-Mei;SUN Hua-Fei;ZHANG Zhen-Ning. Geometric Description of Fibre Bundle Surface for Birkhoff System [J]. 中国物理快报, 2009, 26(3): 30201-030201.
[9]
SHI Chang-Guang. Geometric Property of the Faddeev Model [J]. 中国物理快报, 2008, 25(3): 881-883.
[10]
DUAN Yi-Shi;WU Shao-Feng. Regular Magnetic Monopole from Generalized ’t Hooft Tensor [J]. 中国物理快报, 2006, 23(11): 2932-2935.
[11]
DUAN Yi-Shi;YANG Jie. The Topological Inner Structure of Chern--Simons Tensor Current and the World-Sheet of Strings [J]. 中国物理快报, 2005, 22(5): 1079-1082.
[12]
QU Chang-Zheng;YAO Ruo-Xia;LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions [J]. 中国物理快报, 2004, 21(11): 2077-2080.
[13]
DUAN Yi-Shi;REN Ji-Rong;YANG Jie. Cosmic Strings and Quintessence [J]. 中国物理快报, 2003, 20(12): 2133-2136.
[14]
YANG Guo-Hong;JIANG Ying;DUAN Yi-Shi. Topological Quantization of k-Dimensional Topological Defects and Motion Equations [J]. 中国物理快报, 2001, 18(5): 631-633.
[15]
Integer and Half-Integer Quantization Conditions in Quantum
Mechanics. Integer and Half-Integer Quantization Conditions in Quantum
Mechanics [J]. 中国物理快报, 2001, 18(4): 473-475.