Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$
Kaixuan Zhang1†, Yongping Du2†, Pengdong Wang3, Laiming Wei1, Lin Li1, Qiang Zhang1, Wei Qin1, Zhiyong Lin1, Bin Cheng1, Yifan Wang1, Han Xu1, Xiaodong Fan1, Zhe Sun3,5, Xiangang Wan4,5*, and Changgan Zeng1*
1International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China 2Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China 3National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China 4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract:The Weyl semimetal has emerged as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of a type-II Weyl semimetal WP$_{2}$. Transport studies show a butterfly-like magnetoresistance at low temperature, reflecting the anisotropy of the electron Fermi surfaces. This four-lobed feature gradually evolves into a two-lobed variant with an increase in temperature, mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for magnetoresistance. Moreover, an angle-dependent Berry phase is also discovered, based on quantum oscillations, which is ascribed to the effective manipulation of extremal Fermi orbits by the magnetic field to feel nearby topological singularities in the momentum space. The revealed topological character and anisotropic Fermi surfaces of the WP$_{2}$ substantially enrich the physical properties of Weyl semimetals, and show great promises in terms of potential topological electronic and Fermitronic device applications.
Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature527 495
[2]
Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys.12 1105
[3]
Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun.7 13142
[4]
Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett.118 096603
[5]
Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater.18 476
[6]
Wang Q, Zheng J, He Y, Cao J, Liu X, Wang M, Ma J, Lai J, Lu H, Jia S, Yan D, Shi Y, Duan J, Han J, Xiao W, Chen J H, Sun K, Yao Y and Sun D 2019 Nat. Commun.10 5736
[7]
Chen D, Zhao L X, He J B, Liang H, Zhang S, Li C H, Shan L, Wang S C, Ren Z A, Ren C and Chen G F 2016 Phys. Rev. B94 174411
[8]
Frenzel A J, Homes C C, Gibson Q D, Shao Y M, Post K W, Charnukha A, Cava R J and Basov D N 2017 Phys. Rev. B95 245140
[9]
Zhang K, Du Y, Qi Z, Cheng B, Fan X, Wei L, Li L, Wang D, Yu G, Hu S, Sun C, Huang Z, Chu J, Wan X and Zeng C 2020 Phys. Rev. Appl.13 014058
Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun.8 1642
[12]
Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B97 201103(R)
[13]
Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett.122 176402
Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun.7 11615
[39]
Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B95 125417
Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science346 448