CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Different Thermal Stabilities of Cation Point Defects in LaAlO$_{3}$ Bulk and Films |
Li Guan, Guang-Ming Shen, Hao-Tian Ma, Guo-Qi Jia, Feng-Xue Tan, Ya-Nan Liang, Zhi-Ren Wei** |
Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002
|
|
Cite this article: |
Li Guan, Guang-Ming Shen, Hao-Tian Ma et al 2018 Chin. Phys. Lett. 35 097302 |
|
|
Abstract Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO$_{3}$ bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAlO$_{3}$ under O-rich conditions, while the Al$_{\rm La}$ antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO$_{3}$ films. For LaO-terminated LaAlO$_{3}$ films, La or Al vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO$_{2}$-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An Al interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlO$_{3}$-related materials.
|
|
Received: 03 May 2018
Published: 29 August 2018
|
|
PACS: |
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
|
Fund: Supported by the Hebei Provincial Young Top-Notch Talent Support Program under Grant No BJRC2016, the Innovative Funding Project of Graduates of Hebei University under Grant No hbu2018ss62, and the Midwest Universities Comprehensive Strength Promotion Project. |
|
|
[1] | Brown R, Pendrick V, Kalokitis D and Chai B H T 1990 Appl. Phys. Lett. 57 1351 | [2] | Jacob M V, Mazierska J, Savvides N, Ohshima S and Oikawa S 2002 Physica C 372 474 | [3] | Muller D A, Sorsch T Moccio S F, Baumann H, Evans Lutterodt K and Timp G 1999 Nature 399 758 | [4] | Samara G A 1990 J. Appl. Phys. 68 4214 | [5] | Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500 | [6] | Edge L F, Schlom D G, Chambers S A, Cicerrella E, Freeouf J L, Hlooander B and Schubert J 2004 Appl. Phys. Lett. 84 726 | [7] | Katayama Y 2017 J. Ceram. Soc. Jpn. 125 793 | [8] | Chen J J, Zhao Y, Mao Z Y, Wang D J and Bie L J 2017 J. Lumin. 186 72 | [9] | Pai Y Y, Lee H, Lee J W, Annadi A, Cheng G C, Lu S C, Tomczyk M, Huang M C, Eom C B, Irvin P and Levy J 2018 Phys. Rev. Lett. 120 147001 | [10] | Shen S C, Hong Y P, Li C J, Hong X X, Wang X X and Nie J C 2016 Chin. Phys. B 25 076802 | [11] | Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammer G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J and Mannhart M J 2007 Science 317 1196 | [12] | Yan H, Zhang Z T, Wang S H, Wei X Y, Chen C L and Jin Ke X 2018 ACS Appl. Mater. Interfaces 10 14209 | [13] | Tsai M S, Li C S, Guo S T, Song M Y, Singh A K, Lee W L and Chu M W 2017 Sci. Rep. 7 1770 | [14] | Yu L and Zunger A 2014 Nat. Commun. 5 5118 | [15] | Luo X and Wang B 2008 J. Appl. Phys. 104 073518 | [16] | Luo X and Wang B 2008 J. Appl. Phys. 104 053503 | [17] | Luo X, Wang B and Zheng Y 2009 Phys. Rev. B 80 104115 | [18] | Basletic M, Maurice J L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet É Bouzehouane K, Fusil S and Barthélémy A 2008 Nat. Mater. 7 621 | [19] | Nomura Ken-ichi, Okami S, Xie X J, Mizuno M, Fukunaga K and Ohki J Y 2011 J. Appl. Phys. 50 021502 | [20] | Seo H and Demkov A A 2011 Phys. Rev. B 84 045440 | [21] | Lanier C H, Rondinelli J M, Deng B, Kilaas R, Poeppelmeier K R and Marks L D 2007 Phys. Rev. Lett. 98 086102 | [22] | Zhou J, Yang M, Feng Y P and Andrivo R 2017 Phys. Rev. B 96 201406 | [23] | Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 | [24] | Vanderbilt D 1990 Phys. Rev. B 41 7892 | [25] | Hayward S A, Morrison F D, Redfern S A T, Potapkin B V, Fomseca L R C and Korkin A 2005 Phys. Rev. B 72 054110 | [26] | Dereń P J and Mahiou R 2007 Opt. Mater. 29 766 | [27] | Knizhnik A A, Iskandarova I M, Bagatur A A, Potapkin B V, Fonseca L R C and Korkin A 2005 Phys. Rev. B 72 235329 | [28] | Nakatsuka A, Ohtaka O, Arima H, Nakayama N and Mizota T 2005 Acta Crystallogr. Sect. E: Struct. Rep. Online 61 i148 | [29] | Tanaka T, Matsunaga K, Ikuhara Y and Amamoto T Y 2003 Phys. Rev. B 68 205213 | [30] | Silva R and Dalpian M 2016 J. Alloys Compd. 684 544 | [31] | Yamamoto T and Mizoguchi T 2012 Phys. Rev. B 86 094117 | [32] | Sathe V G and Dubey A 2007 J. Phys.: Condens. Matter 19 382201 | [33] | Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Kaspar T C and Chambers S A 2011 Phys. Rev. B 83 085408 | [34] | Weston L, Cui X Y, Ringer S P and Stampfl C 2014 Phys. Rev. Lett. 113 186401 | [35] | Ohtomo A and Hwang H Y 2004 Nature 427 423 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|