Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 097301    DOI: 10.1088/0256-307X/35/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains
Ze-Long He1**, Qiang Li2**, Kong-Fa Chen3, Ji-Yuan Bai1, Sui-Hu Dang1
1School of Electronic and Information Engineering, Yangtze Normal University, Chongqing 408003
2College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000
3College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108
Cite this article:   
Ze-Long He, Qiang Li, Kong-Fa Chen et al  2018 Chin. Phys. Lett. 35 097301
Download: PDF(692KB)   PDF(mobile)(687KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A parallel-coupled double quantum dot (PCDQD) system with two multi-quantum dot chains is designed. Conductance versus Fermi energy level is investigated utilizing the non-equilibrium Green's function approach. If two quantum dots are added on each side of the PCDQD system, additional Breit–Wigner and Fano resonances occur in the conductance spectra. If quantum dots are added on one side of the system, small Fano resonances can be observed in the conductance spectra. Adjusting the number of side-coupled quantum dots, the anti-resonance bands emerge at different positions, which makes the system applicable as a quantum switching device. Moreover, the $I$–$V$ characteristic curve presents the step characteristic and the width of the step decreases with increasing the number of side-coupled quantum dots.
Received: 11 June 2018      Published: 29 August 2018
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  05.60.Gg (Quantum transport)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11447132 and 11504042, the Chongqing Science and Technology Commission Project under Grant Nos cstc2014jcyjA00032 and cstc2016jcyjA1158, and the Scientific Research Project for Advanced Talents of Yangtze Normal University under Grant No 2017KYQD09.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/097301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Long He
Qiang Li
Kong-Fa Chen
Ji-Yuan Bai
Sui-Hu Dang
[1]Bai J Y, He Z L and Yang S B 2014 Acta Phys. Sin. 63 017303 (in Chinese)
[2]He Z L, Bai J Y, Ye S J, Li L and Li C X 2017 Chin. Phys. Lett. 34 087301
[3]An X T, Mu H Y, Xian L F and Liu J J 2012 Acta Phys. Sin. 61 157201 (in Chinese)
[4]He Z L, Bai J Y, Li P and Lü T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese)
[5]Bai J Y, He Z L, Li L, Han G H, Zhang B L, Jiang P H and Fan Y H 2015 Acta Phys. Sin. 64 207304 (in Chinese)
[6]Zhang Y T, Zhai F, Qiao Z H and Sun Q F 2012 Phys. Rev. B 86 121403
[7]Yang X F and Liu Y S 2010 Nanoscale Res. Lett. 5 1228
[8]Zhang Y and Vishwanath A 2010 Phys. Rev. Lett. 105 206601
[9]Li Y X, Choi H Y and Lee H W 2008 Phys. Lett. A 372 2073
[10]Gong W J, Zheng Y S, Liu Yu, Kariuki F N and Lü T Q 2008 Phys. Lett. A 372 2934
[11]Lu H Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 235320
[12]He Z L, Lü T Q and Zhang D 2013 Chin. Phys. B 22 027306
[13]Xiong Y C, Zhang J, Zhou W H and Laref A 2017 Chin. Phys. B 26 097102
[14]Chang B, Wang Q, Xie H and Liang J Q 2011 Phys. Lett. A 375 2932
[15]Chi F, Zheng J, Lu X D and Zhang K C 2011 Phys. Lett. A 375 1352
[16]Yang Z C, Sun Q F and Xie X C 2014 J. Phys.: Condens. Matter 26 045302
[17]Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C and Guo G P 2013 Appl. Phys. Lett. 103 162109
[18]An X T, Mu H Y, Li Y X and Liu J J 2011 Phys. Lett. A 375 4078
[19]Bai J Y, Li L, He Z L, Ye S J, Zhao S J, Dang S H and Sun W M 2017 Chin. Phys. B 26 117302
[20]Yacoby A, Heiblum M, Mahalu D and Hadas S 1995 Phys. Rev. Lett. 74 4047
[21]Zhao H K and Zhao L L 2011 Eur. Phys. J. B 79 485
[22]Zhao L L, Zhao H K and Wang J 2012 Phys. Lett. A 376 1849
[23]Zhao H K, Wang J and Wang Q 2012 Europhys. Lett. 99 48005
[24]He Z L and Lü T Q 2012 Phys. Lett. A 376 2501
[25]Zhao H K, Wang J and Wang Q 2014 Phys. Lett. A 378 1553
[26]Fano U 1961 Phys. Rev. 124 1866
[27]Zheng J, Zhu M J and Chi Feng 2012 J. Low Temp. Phys. 166 208
[28]Chen K W and Chang C R 2008 Phys. Rev. B 78 235319
[29]de Guevara M L L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335
[30]He Z L, Lü T Q, Cui L, Xue H J, Li L J and Yin H T 2011 Chin. Phys. B 20 117303
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 097301
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 097301
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 097301
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 097301
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 097301
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 097301
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 097301
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 097301
[10] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 097301
[11] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 097301
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 097301
[13] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 097301
[14] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 097301
[15] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 097301
Viewed
Full text


Abstract