CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl |
Shuai Zhang1**, Mo-Ran Gao1,2, Huan-Yan Fu1,3, Xin-Min Wang1,2, Zhi-An Ren1,2,4, Gen-Fu Chen1,2,4** |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3School of Physics and Electronics, Shandong Normal University, Jinan 250014
4Collaborative Innovation Center of Quantum Matter, Beijing 100190 |
|
Cite this article: |
Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu et al 2018 Chin. Phys. Lett. 35 097401 |
|
|
Abstract Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the materials after releasing the gate voltage $V_{\rm G}$ at temperatures higher than the melting point of the selected ionic liquid. Here we show that a permanent superconductivity with transition temperature $T_{\rm c}$ of 24 and 15 K is realized in single crystals and polycrystalline samples of HfNCl and ZrNCl upon applying proper $V_{\rm G}$'s at different temperatures. Reversible change between insulating and superconducting states can be obtained by applying positive and negative $V_{\rm G}$ at low temperature such as 220 K, whereas $V_{\rm G}$'s applied at 250 K induce the irreversible superconducting transition. The upper critical field $H_{\rm c2}$ of the superconducting states obtained at different gating temperatures shows similar temperature dependence. We propose a reasonable scenario that partial vacancy of Cl ions could be caused by applying proper $V_{\rm G}$'s at slightly higher processing temperatures, which consequently results in a permanent electron doping in the system. Such a technique shows great potential to systematically tune the bulk electronic state in the similar two-dimensional systems.
|
|
Received: 25 August 2018
Published: 29 August 2018
|
|
PACS: |
74.25.-q
|
(Properties of superconductors)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11704403, the National Key Research Program of China under Grant No 2016YFA0401000 and 2016YFA0300604, and the Strategic Priority Research Program (B) of Chinese Academy of Sciences under Grant No XDB07020100. |
|
|
[1] | Yuan H T, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M and Iwasa Y 2009 Adv. Funct. Mater. 19 1046 | [2] | Leng X, Pereiro J, Strle J, Dubuis G, Bollinger A T, Gozar A, Wu J, Litombe N, Panagopoulos C, Pavuna D and Božović I 2017 npj Quantum Mater. 2 35 | [3] | Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563 | [4] | Zhang Z C, Feng X, Guo M H, Li K, Zhang J S, Ou Y B, Feng Y, Wang L L, Chen X, He K, Ma X C, Xue Q and Wang Y Y 2014 Nat. Commun. 5 4915 | [5] | Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y and Kawasaki M 2008 Nat. Mater. 7 855 | [6] | Ye J T, Inoue S, Kobayashi K, Kasahara Y, Yuan H T, Shimotani H and Iwasa Y 2010 Nat. Mater. 9 125 | [7] | Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193 | [8] | Saito Y, Nojima T and Iwasa Y 2018 Nat. Commun. 9 778 | [9] | Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M and Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001 | [10] | Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002 | [11] | Li L J, O'Farrell E C T, Loh K P, Eda G, Ozyilmaz B and Castro Neto A H 2016 Nature 529 185 | [12] | Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y and Yu P 2017 Nature 546 124 | [13] | Lu J M, Zheliuk O, Chen Q H, Leermakers I, Hussey N E, Zeitler U and Ye J T 2018 Proc. Natl. Acad. Sci. USA 115 3551 | [14] | Zhang S, Tanaka M and Yamanaka S 2012 Phys. Rev. B 86 024516 | [15] | Yamanaka S, Hotehama K and Kawaji H 1998 Nature 392 580 | [16] | Ye G J, Ying J J, Yan Y J, Luo X G, Cheng P, Xiang Z J, Wang A F and Chen X H 2012 Phys. Rev. B 86 134501 | [17] | Zhang S, Tanaka M, Zhu H and Yamanaka S 2013 Supercond. Sci. Technol. 26 085015 | [18] | Zhang S, Tanaka M, Onimaru T, Takabatake T, Isikawa Y and Yamanaka S 2013 Supercond. Sci. Technol. 26 045017 | [19] | Takano T, Kishiume T, Taguchi Y and Iwasa Y 2008 Phys. Rev. Lett. 100 247005 | [20] | Taguchi Y, Kitora A and Iwasa Y 2006 Phys. Rev. Lett. 97 107001 | [21] | Yuan H T, Liu H W, Shimotani H, Guo H, Chen M W, Xue Q K and Iwasa Y 2011 Nano Lett. 11 2601 | [22] | Cui Y, Zhang G H, Li H B, Lin H, Zhu X Y, Wen H H, Wang G G, Sun J Z, Ma M W, Li Y, Gong D L, Xie T, Gu Y H, Li S L, Luo H Q, Yu P and Yu W Q 2018 Sci. Bull. 63 11 | [23] | Sato T, Masuda G and Takagi K 2004 Electrochim. Acta 49 3603 | [24] | Zhu L and Yamanaka S 2003 Chem. Mater. 15 1897 | [25] | Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G and Parkin S S P 2013 Science 339 1402 | [26] | Zhou Y and Ramanathan S 2012 J. Appl. Phys. 111 084508 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|