Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 048501    DOI: 10.1088/0256-307X/35/4/048501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch
Ayoub Kanaani1, Mohammad Vakili2**, Davood Ajloo1**, Mehdi Nekoei3
1School of Chemistry, Damghan University, Damghan 36716-41167, Iran
2Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
3Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Cite this article:   
Ayoub Kanaani, Mohammad Vakili, Davood Ajloo et al  2018 Chin. Phys. Lett. 35 048501
Download: PDF(1131KB)   PDF(mobile)(1117KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using nonequilibrium Green's function formalism combined first-principles density functional theory, we analyze the transport properties of a 4,4-dimethyl-6-(4-nitrophenyl)-2-phenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene molecular optical switch. The title molecule can convert between closed and open forms by visible or ultraviolet irradiation. The $I$–$V$ characteristics, differential conductance, on-off ratio, electronic transmission coefficients, spatial distribution of molecular projected self-consistent Hamiltonian orbitals, HOMO-LUMO gaps, effect of electrode materials $Y$(111) ($Y=$Au, Ag and Pt) on electronic transport and different molecular geometries corresponding to the closed and open forms through the molecular device are discussed in detail. Based on the results, as soon as possible the open form translates to the closed form, and there is a switch from the ON state to the OFF state (low resistance switches to high resistance). Theoretical results show that the donor/acceptor substituent plays an important role in the electronic transport of molecular devices. The switching performance can be improved to some extent through suitable donor and acceptor substituents.
Received: 18 December 2017      Published: 13 March 2018
PACS:  85.65.+h (Molecular electronic devices)  
  31.15.A- (Ab initio calculations)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Supported by the Damghan University, the Ferdowsi University of Mashhad and the Islamic Azad University of Shahrood.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/048501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/048501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ayoub Kanaani
Mohammad Vakili
Davood Ajloo
Mehdi Nekoei
[1]Basch H, Cohen R and Ratner M A 2005 Nano Lett. 5 1668
[2]Frederiksen T et al 2004 Phys. Rev. Lett. 93 256601
[3]Sarmah S and Kumar A 2010 Indian J. Phys. 84 1211
[4]Devi S and Srivastva M 2010 Indian J. Phys. 84 1561
[5]Xia C J et al 2008 Chin. Phys. Lett. 25 1840
[6]Brus V et al 2012 Semicond. Sci. Technol. 27 055008
[7]Vakili M et al 2017 Chem. Phys. Lett. 686 140
[8]Kanaani A et al 2018 Optik 153 135
[9]Lam K T et al 2009 Appl. Phys. Lett. 95 143107
[10]Sarmah S and Kumar A 2011 Indian J. Phys. 85 713
[11]Bhadra J and Sarkar D 2010 Indian J. Phys. 84 693
[12]Bhadra J and Sarkar D 2010 Indian J. Phys. 84 1321
[13]Tsuji Y et al 2009 J. Phys. Chem. C 113 21477
[14]Wang Z et al 2008 Appl. Phys. Lett. 93 152106
[15]Bai P et al 2008 Nanotechnology 19 115203
[16]Anbarasan P et al 2011 Indian J. Phys. 85 1477
[17]Mandal G and Ganguly T 2011 Indian J. Phys. 85 1229
[18]Mitra S et al 2011 Indian J. Phys. 85 649
[19]Tekerek S et al 2011 Indian J. Phys. 85 1469
[20]Xia C J et al 2011 Chin. Phys. Lett. 28 093102
[21]Liao J H et al 2010 Nano Lett. 10 759
[22]Zhang C et al 2006 Phys. Rev. B 73 125445
[23]Chen F et al 2005 Nano Lett. 5 503
[24]Kanaani A et al 2016 J. Chem. Sci. 128 1211
[25]Fahid F et al 2017 Mol. Phys. 115 795
[26]Kanaani A et al 2016 Mol. Phys. 114 2081
[27]Rau H, Durr H and Bouas-Laurent H 1990 Photochromism Molecules Syst. (Gulf Professional Publishing) p 165
[28]Crano J C et al 1996 Pure Appl. Chem. 68 1395
[29]Winkler J D et al 1989 J. Am. Chem. Soc. 111 769
[30]Dvornikov A et al 1994 J. Phys. Chem. 98 6746
[31]Pu S et al 2006 Mater. Lett. 60 485
[32]Willner I et al 1993 J. Am. Chem. Soc. 115 8690
[33]Kiyani H et al 2013 J. Taibah University For Sci. 7 72
[34]Ghavidast A et al 2014 J. Mol. Liq. 198 128
[35]Michaelson H B 1977 J. Appl. Phys. 48 4729
[36]Hammer B and Norskov J 1995 Nature 376 238
[37]Frisch M, Trucks G, Schlegel H et al 2004 Gaussian 03 (Revision C.02) (Gaussian Inc.)
[38]Lee C et al 1988 Phys. Rev. B 37 785
[39]Cao Y et al 2003 J. Phys. Chem. B 107 3803
[40]Sellers H et al 1993 J. Am. Chem. Soc. 115 9389
[41]Geng W et al 2004 Thin Solid Films 464 379
[42]Kondo H et al 2009 J. Phys.: Condens. Matter 21 064220
[43]Kanaani A et al 2017 Mol. Phys. 115 1
[44]Ke S H et al 2005 J. Chem. Phys. 122 074704
[45]Parashar S et al 2014 Solid State Commun. 191 54
[46]Persson I and Nilsson K B 2006 Inorg. Chem. 45 7428
[47]Chen X et al 2013 Molecules 18 3279
[48]Seitsonen A P et al 2001 J. Am. Chem. Soc. 123 7347
[49]Brandbyge M et al 2002 Phys. Rev. B 65 165401
[50]Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[51]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[52]Staykov A et al 2007 J. Phys. Chem. C 111 3517
[53]Marsella M J et al 2000 Org. Lett. 2 2979
[54]Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[55]Staykov A et al 2007 J. Phys. Chem. C 111 11699
Related articles from Frontiers Journals
[1] Xiao Guo, Wen-jie Liang. The Unconventional Influence of a Nearby Molecule onto Transport of Single C$_{60}$ Molecule Transistor[J]. Chin. Phys. Lett., 2019, 36(12): 048501
[2] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 048501
[3] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 048501
[4] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 048501
[5] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 048501
[6] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 048501
[7] Cai-Juan Xia, Bo-Qun Zhang, Mao Yang, Chun-Lan Wang, Ai-Yun Yang. Effect of Chirality on the Electronic Transport Properties of the Thioxanthene-Based Molecular Switch[J]. Chin. Phys. Lett., 2016, 33(04): 048501
[8] Qiu-Hua Wu, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical[J]. Chin. Phys. Lett., 2016, 33(03): 048501
[9] LEI Hui, TAN Xun-Qiong. A Theoretical Investigation on Rectifying Performance of a Single Motor Molecular Device[J]. Chin. Phys. Lett., 2015, 32(02): 048501
[10] TAN Xun-Qiong. Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation[J]. Chin. Phys. Lett., 2014, 31(12): 048501
[11] WU Qiu-Hua, ZHAO Peng, LIU De-Sheng. Perfect Spin-Filtering in 4H-TAHDI-Based Molecular Devices: the Effect of N-Substitution[J]. Chin. Phys. Lett., 2014, 31(10): 048501
[12] WU Qiu-Hua, ZHAO Peng, LIU De-Sheng. A First-principles Study of Spin-polarized Transport Properties of a Co-coordination Complex[J]. Chin. Phys. Lett., 2014, 31(06): 048501
[13] WU Qiu-Hua, ZHAO Peng, LIU De-Sheng. Electronic Transport of a Molecular Photoswitch with Graphene Nanoribbon Electrodes[J]. Chin. Phys. Lett., 2014, 31(05): 048501
[14] WU Qiu-Hua, ZHAO Peng, LIU De-Sheng. Low Bias Negative Differential Resistance Behavior in Carbon/Boron Nitride Nanotube Heterostructures[J]. Chin. Phys. Lett., 2013, 30(10): 048501
[15] REN Hua, LIANG Wei, ZHAO Peng, LIU De-Sheng. Low Bias Negative Differential Resistance with Large Peak-to-Valley Ratio in a BDC60 Junction[J]. Chin. Phys. Lett., 2012, 29(7): 048501
Viewed
Full text


Abstract