CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator |
Ya-Yi Chen1,2, Yuan Liu2**, Zhao-Hui Wu1**, Li Wang1, Bin Li1, Yun-Fei En2, Yi-Qiang Chen2 |
1School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640 2Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Produce Reliability and Environmental Testing Research Institute, Guangzhou 510610
|
|
Cite this article: |
Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu et al 2018 Chin. Phys. Lett. 35 048502 |
|
|
Abstract Low-frequency noise (LFN) in all operation regions of amorphous indium zinc oxide (a-IZO) thin film transistors (TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric, and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al$_2$O$_3$ gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about $1.18\times10^{-3}$. Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the $\Delta N$–$\Delta\mu$ model, and the total trap density near the IZO/oxide interface is about $1.23\times 10^{18}$ cm$^{-3}$eV$^{-1}$.
|
|
Received: 24 December 2017
Published: 13 March 2018
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
77.55.hf
|
(ZnO)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61574048, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048, and the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172. |
|
|
[1] | Xu H, Lan L F, Xu M et al 2011 Appl. Phys. Lett. 99 253501 | [2] | Noulis T, Siskos S and Sarrabayrouse G 2008 Int. J. Circ. Theor. Appl. 36 813 | [3] | Lan L F and Peng J B 2011 IEEE Trans. Electron Devices 58 1452 | [4] | Choi H S, Jeon S H, Kim H J et al 2011 IEEE Electron Device Lett. 32 1083 | [5] | Kim T H, Nam Y Y, Hur J Y et al 2016 IEEE Electron Device Lett. 37 1131 | [6] | Kim H J, Jeong C Y, Bae S D et al 2017 J. Vac. Sci. Technol. B 35 010601 | [7] | Dimitriadis C A, Brini J, Lee J I et al 1999 J. Appl. Phys. 85 3934 | [8] | Jayaraman R and Sodini C G 1989 IEEE Trans. Electron Devices 36 1773 | [9] | Cai M and Yao R 2017 J. Appl. Phys. 122 154503 | [10] | Fung T C, Baek G and Kanicki J 2010 J. Appl. Phys. 108 074518 | [11] | Hooge F N 1994 IEEE Trans. Electron Devices 41 1926 | [12] | Ghibaudo G, Roux O and Nguyen D C 1991 Phys. Status Solidi A 124 571 | [13] | Xu Y, Minari T and Tsukagoshi K 2011 Solid-State Electron. 61 106 | [14] | Liu Y, Deng S and Chen R S 2018 IEEE Electron Device Lett. 39 200 | [15] | He H Y, Zheng X R and Zhang S D 2015 IEEE Electron Device Lett. 36 156 | [16] | Pichon L, Cretu B and Boukhenoufa A 2009 Thin Solid Films 517 6367 | [17] | Liu Y, Wu W J, Li B et al 2014 Acta Phys. Sin. 63 098503 (in Chinese) | [18] | Liu Y, Wu W J, Li B et al 2015 Chin. Phys. Lett. 32 088506 | [19] | Lee J et al 2013 IEEE Electron Device Lett. 34 1521 | [20] | Wang J, Liu Y, Liu Y R et al 2016 Acta Phys. Sin. 108 106103 | [21] | Ioannidis E G et al 2010 J. Appl. Phys. 108 106103 | [22] | Theodorou G C, Tsormpatzoglou A, Dimitriadis C A et al 2011 IEEE Electron Device Lett. 32 898 | [23] | Lee J M, Cheong W S, Hwang C S et al 2009 IEEE Electron Device Lett. 30 505 | [24] | Cho I T, Cheong W S, Hwang C S et al 2011 IEEE Electron Device Lett. 30 828 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|