Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 048101    DOI: 10.1088/0256-307X/35/4/048101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effects of Substrate Temperature on Properties of Transparent Conductive Ta-Doped TiO$_{2}$ Films Deposited by Radio-Frequency Magnetron Sputtering
Yang Liu1,2, Qian Peng1, Zhong-Pin Zhou1, Guang Yang1**
1School of Physics, Huazhong University of Science and Technology, Wuhan 430074
2School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000
Cite this article:   
Yang Liu, Qian Peng, Zhong-Pin Zhou et al  2018 Chin. Phys. Lett. 35 048101
Download: PDF(1339KB)   PDF(mobile)(1329KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ta-doped titanium dioxide films are deposited on fused quartz substrates using the rf magnetron sputtering technique at different substrate temperatures. After post-annealing at 550$^{\circ\!}$C in a vacuum, all the films are crystallized into the polycrystalline anatase TiO$_{2}$ structure. The effects of substrate temperature from room temperature up to 350$^{\circ\!}$C on the structure, morphology, and photoelectric properties of Ta-doped titanium dioxide films are analyzed. The average transmittance in the visible region (400–800 nm) of all films is more than 73%. The resistivity decreases firstly and then increases moderately with the increasing substrate temperature. The polycrystalline film deposited at 150$^{\circ\!}$C exhibits a lowest resistivity of $7.7\times10^{-4}$ $\Omega\cdot$cm with the highest carrier density of $1.1\times10^{21}$ cm$^{-3}$ and the Hall mobility of 7.4 cm$^{2}\cdot V^{-1}$ $s^{-1}$.
Received: 09 October 2017      Published: 13 March 2018
PACS:  81.15.Cd (Deposition by sputtering)  
  68.55.ag (Semiconductors)  
  73.25.+i (Surface conductivity and carrier phenomena)  
  78.66.Hf (II-VI semiconductors)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374114.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/048101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/048101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Liu
Qian Peng
Zhong-Pin Zhou
Guang Yang
[1]Gordon R G 2000 Mater. Res. Bull. 25 52
[2]Hosono H, Ohta H, Orita M et al 2002 Vacuum 66 419
[3]Kim D H, Lee S, Park J H et al 2012 Sol. Energy Mater. Sol. Cells 96 276
[4]Fortunato E, Barquinha P, Pimentel A et al 2005 Thin Solid Films 487 205
[5]Tahar R, Ban T, Ohya Y et al 1998 J. Appl. Phys. 83 2631
[6]Mryasov O N and Freeman A J 2001 Phys. Rev. B 64 233111
[7]Calnan S and Tiwari A N 2010 Thin Solid Films 518 1839
[8]Hitosugi T, Ueda A, Furubayashi Y et al 2007 Jpn. J. Appl. Phys. 46 L86
[9]Furubayashi Y, Hitosugi T, Yamamoto Y et al 2005 Appl. Phys. Lett. 86 252101
[10]Wan G, Wang S, Zhang X et al 2015 Appl. Surf. Sci. 357 622
[11]Hitosugi T, Yamada N, Nakao S et al 2010 Phys. Status Solidi A 207 1529
[12]Hitosugi T, Furubayashi Y, Ueda A et al 2005 Jpn. J. Appl. Phys. Part 2 44 L1063
[13]Gillispie M A, Van Hest M F A M, Dabney M S et al 2007 J. Mater. Res. 22 2832
[14]Mazzolini P, Gondoni P, Russo V et al 2015 J. Phys. Chem. C 119 6988
[15]Huy H A, Aradi B, Frauenheim T et al 2012 J. Appl. Phys. 112 16103
[16]Manole A V, Dobromir M, Gîrtan M et al 2013 Ceram. Int. 39 4771
[17]Fallah M, Zamani M M, Rahimi R et al 2014 Appl. Surf. Sci. 316 456
[18]Battiston G A, Gerbasi R, Gregori A et al 2000 Thin Solid Films 371 126
[19]Long H, Yang G, Chen A et al 2008 Thin Solid Films 517 745
[20]Tucker R T, Beckers N A, Fleischauer M D et al 2012 Thin Solid Films 525 28
[21]Wang S, Hsu Y, Lee R et al 2004 Appl. Surf. Sci. 229 140
[22]Sato Y, Akizuki H, Kamiyama T et al 2008 Thin Solid Films 516 5758
[23]Chen C, Ji Y, Gao X Y et al 2012 Acta Phys. Sin. 61 036104 (in Chinese)
[24]Lu L, Guo M, Thornley S et al 2016 Sol. Energy Mater. Sol. Cells 149 310
[25]Ok K, Park Y, Chung K et al 2013 Appl. Phys. Lett. 103 213501
[26]Furubayashi Y, Yamada N, Hirose Y et al 2007 J. Appl. Phys. 101 093705
[27]Seeger S, Ellmer K, Weise M et al 2016 Thin Solid Films 605 44
[28]Kim H, Osofsky M, Prokes S M et al 2013 Appl. Phys. Lett. 102 171103
[29]Wagner C D, Riggs W M, Davis L E et al 1978 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie MN: Perkin-Elmer)
[30]Song D Y, Aberle A G and Xia J 2002 Appl. Surf. Sci. 195 291
[31]Ma Q, Ye Z, He H et al 2007 Vacuum 82 9
[32]Hong R J, Jiang X, Szyszka B et al 2003 Appl. Surf. Sci. 207 341
[33]Zhu K, Yang Y, Song W et al 2015 Mater. Lett. 145 279
[34]Neubert M, Cornelius S, Fiedler J et al 2013 J. Appl. Phys. 114 083707
[35]Tseng Z L, Chen L C, Tang J F et al 2017 J. Electro. Mater. 46 1476
[36]Coutts T J, Young D L and Li X N 2000 Mater. Res. Bull. 25 58
Related articles from Frontiers Journals
[1] Jia-Li Wu, Run-Ze Qi, Qiu-Shi Huang, Yu-Fei Feng, Zhan-Shan Wang, Zi-Hua Xin. Stress, Roughness and Reflectivity Properties of Sputter-Deposited B$_{4}$C Coatings for X-Ray Mirrors[J]. Chin. Phys. Lett., 2019, 36(12): 048101
[2] Hui-Li Liang, Shu-Juan Cui, Wen-Xing Huo, Tao Wang, Yong-Hui Zhang, Bao-Gang Quan, Xiao-Long Du, Zeng-Xia Mei. Direct ZnO X-Ray Detector with Tunable Sensitivity[J]. Chin. Phys. Lett., 2019, 36(11): 048101
[3] Chao Zhou, Hui Zhou, Hua-Ping Zuo, Kai-Feng Zhang, Hu Wang, Yu-Qing Xiong. A Reflective Inorganic All-Thin-Film Flexible Electrochromic Device with a Seven-Layer Structure[J]. Chin. Phys. Lett., 2018, 35(7): 048101
[4] Lu Liu, Yong Su, Jing-Ping Xu, Yi-Xian Zhang. Fabrication and Characteristics of Nano-Floating Gate Memories with ZnO Nano-Crystals as Charge-Storage Layer[J]. Chin. Phys. Lett., 2018, 35(6): 048101
[5] Zhi-Cheng Wu, Lei-Lei Guan, Hui Li, Jia-Da Wu, Jian Sun, Ning Xu,. Growth of Single-Crystalline Silicon Nanocone Arrays by Plasma Sputtering Reaction Deposition[J]. Chin. Phys. Lett., 2017, 34(2): 048101
[6] R. Perumal, Z. Hassan, R.Saravanan. Structural, Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 048101
[7] Long Liu, Sheng-Guo Zhou, Zheng-Bing Liu, Yue-Chen Wang, Li-Qiu Ma. Effect of Chromium on Structure and Tribological Properties of Hydrogenated Cr/a-C:H Films Prepared via a Reactive Magnetron Sputtering System[J]. Chin. Phys. Lett., 2016, 33(02): 048101
[8] ZHU Yue-Qin, ZHANG Zhong-Hua, SONG San-Nian, XIE Hua-Qing, SONG Zhi-Tang, SHEN Lan-Lan, LI Le, WU Liang-Cai, LIU Bo. Characterization of Ge Doping on Sb2Te3 for High-Speed Phase Change Memory Application[J]. Chin. Phys. Lett., 2015, 32(07): 048101
[9] TANG Shi-Yu, LI Run, OU Xin, XU Han-Ni, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. TixSb2Te Thin Films for Phase Change Memory Applications[J]. Chin. Phys. Lett., 2014, 31(07): 048101
[10] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 048101
[11] ZHONG Yu-Ting, CHENG Zi-Qiang, MA Liang, WANG Jia-Hong, HAO Zhong-Hua, WANG Qu-Quan. Surface Plasmon Resonance and Raman Scattering Activity of the Au/AgxO/Ag Multilayer Film[J]. Chin. Phys. Lett., 2014, 31(04): 048101
[12] CUI Xiao, ZHANG Can, LIANG Song, ZHU Hong-Liang, HOU Lian-Ping. Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits[J]. Chin. Phys. Lett., 2014, 31(04): 048101
[13] SHUI Lu-Yu, YAN Biao. Growth and Morphology of Magnetron-Sputtered TiAl Alloy Thin Films Studied by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2014, 31(04): 048101
[14] LI Run, TANG Shi-Yu, BAI Gang, YIN Qiao-Nan, LAN Xue-Xin, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. GeTe4 as a Candidate for Phase Change Memory Application[J]. Chin. Phys. Lett., 2013, 30(5): 048101
[15] ZHANG Bin, LI Min, WANG Jian-Zhong, SHI Li-Qun. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2[J]. Chin. Phys. Lett., 2013, 30(2): 048101
Viewed
Full text


Abstract