CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors |
XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei**, XIE Wen-Fa |
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012
|
|
Cite this article: |
XIANG Lan-Yi, YING Jun, HAN Jin-Hua et al 2015 Chin. Phys. Lett. 32 098501 |
|
|
Abstract Polymer field-effect transistors operated in the n-channel model with a top-gate/bottom-contact are processed using a solution method. The transistor performance depends on the gate dielectric layer. A high performance polymer transistor is achieved, with the saturated electron mobility of about 0.46 cm2/Vs, threshold voltage nearly 0 V and subthreshold sway of about 0.9 V/decade, employing a polystyrene (PS) dielectric layer. The transistor performances are further improved with increasing current and lower operation voltages by utilizing a bi-layer gate dielectric, comprising a thin PS dielectric layer adjacent to the semiconductor to minimize the density of the interface traps for obtaining a small VT, a large μ and a poly(methyl methacrylate) (PMMA) dielectric layer with a relatively high-κ adjacent to the gate electrode for enlarging the capacitance, processed from the orthogonal solvents.
|
|
Received: 07 April 2015
Published: 02 October 2015
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Mizukami M, Hirohata N, Iseki T, Ohtawara K, Tada T, Yagyu S, Abe T, Suzuki T, Fujisaki Y, Inoue Y, Tokito S and Kurita T 2006 IEEE Electron Device Lett. 27 249 [2] Baude P F, Ender D A, Haase M A, Kelley T W, Muyres D V and Theiss S D 2003 Appl. Phys. Lett. 82 3964 [3] Klauk H, Zschieschang U, Pflaum J and Halik M 2007 Nature 445 745 [4] Wang W and Ma D G 2010 Chin. Phys. Lett. 27 018503 [5] Knopfmacher O, Hammock M L, Appleton A L, Schwartz G, Mei J, Lei T, Pei J and Bao Z 2014 Nat. Commun. 5 2954 [6] Chen H J, Guo Y L, Yu G, Zhao Y, Zhang J, Gao D, Liu H T and Liu Y Q 2012 Adv. Mater. 24 4618 [7] Schmidt R, Oh J H, Sun Y S, Deppisch M, Krause A M, Radacki K, Braunschweig H, K?nemann M, Erk P, Bao Z and Würthner F 2009 J. Am. Chem. Soc. 131 6215 [8] Kim H, Sohn S, Jung D, Maeng W J, Kim H, Kim T S, Hahn J, Lee S, Yi Y and Cho M H 2008 Org. Electron. 9 1140 [9] Kang J, Shin N, Jang D Y, Prabhu V M and Yoon Do Y 2008 J. Am. Chem. Soc. 130 12273 [10] Jedaa A, Burkhardt M, Zschieschang U, Klauk H, Habich D, Schmid G and Halik M 2009 Org. Electron. 10 1442 [11] Zhang H, Mi B X, Li X, Gao Z Q, Zhao Lu and Huang W 2013 Chin. Phys. Lett. 30 028501 [12] Wang Z, Alam M W, Lou Yi, Naka S and Okada H 2012 Appl. Phys. Lett. 100 043302 [13] Faraji S, Hashimoto T, Turner M L and Majewski L A 2015 Org. Electron. 17 178 [14] Singh R, Meena J S, Tsai I H, Lin Y T and Wang C J, Ko F H2015 Org. Electron. 19 120 [15] Noh Y Y, Zhao N, Caironi M and Sirringhaus H 2007 Nat. Nanotechnol. 2 784 [16] Richards T J and Sirringhaus H 2007 J. Appl. Phys. 102 094510 [17] Yan H, Chen Z H, Zheng Y, Newman C, Quinn J R, Dotz F and Kastler M 2009 Nature 457 679 [18] Caironi M, Bird M, Fazzi D, Chen Z, Pietro R D, Newman C, Facchetti A and Sirringhaus H 2011 Adv. Funct. Mater. 21 3371 [19] Baeg K J, Khim D, Jung S W, Kang M, You I K, Kim D Y, Facchetti A and Noh Y Y 2012 Adv. Mater. 24 5433 [20] Unni K N N, Sylvie D S and Nunzi J M 2005 J. Phys. D: Appl. Phys. 38 1148 [21] Veres J, Ogier S D, Leeming S W, Cupertino D C and Khaffaf S M 2003 Adv. Funct. Mater. 13 199 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|