CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Unveiling a Novel Insulator-to-Metal Transition in La$_{2}$NiO$_{4+\delta}$: Challenging High-Temperature Superconductivity Claimed for Single-Layer Lanthanum Nickelates |
Yunqi Ji, Xiaohan Wang, Xiaohe Li, Wenting Tang, Xinyang Li, Xin Wang, Fangfei Li*, Liang Li*, and Qiang Zhou |
Synergetic Extreme Condition User Facility, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
Cite this article: |
Yunqi Ji, Xiaohan Wang, Xiaohe Li et al 2024 Chin. Phys. Lett. 41 097402 |
|
|
Abstract La$_{2}$NiO$_{4}$ has a similar structure to La$_{2}$CuO$_{4}$ and was proposed as a high-temperature superconductor based on magnetic-moment measurements decades ago. Nevertheless, with the exception for electrical resistance drop behavior of about 4 orders of magnitude that is claimed to originate from the superconductivity ever observed in Sr-doped La$_{2}$NiO$_{4}$, most electrical data reported to date in La$_{2}$NiO$_{4}$ system exhibit a trivial insulating ground state. Here, we definitively identify the similar electrical resistance drop behavior of more than 3 orders of magnitude in La$_{2}$NiO$_{4+\delta}$. However, our extensive investigations reveal that this phenomenon is a novel insulator-to-metal transition, distinct from superconductivity. Intriguingly, compared to the weak magnetic-field effects, pressure can significantly suppress the transition and transform from the metallic to an insulating ground state, accompanied by an isostructural phase transition. Our work not only elucidates the fundamental properties of the metallic conducting ground state in La$_{2}$NiO$_{4+\delta}$, but also critically challenges the notion of superconductivity in single-layer lanthanum nickelates.
|
|
Received: 13 May 2024
Published: 19 September 2024
|
|
PACS: |
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
72.60.+g
|
(Mixed conductivity and conductivity transitions)
|
|
|
|
|
[1] | Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901 |
[2] | Zachar O, Kivelson S A, and Emery V J 1998 Phys. Rev. B 57 1422 |
[3] | Lechermann F 2020 Phys. Rev. B 101 081110 |
[4] | Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 |
[5] | Zeng S W, Li C J, Chow L E et al. 2022 Sci. Adv. 8 eabl9927 |
[6] | Gu Q Q and Wen H H 2022 Innovation 3 100202 |
[7] | Wu X, Di Sante D, Schwemmer T, Hanke W, Hwang H Y, Raghu S, and Thomale R 2020 Phys. Rev. B 101 060504 |
[8] | Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302 |
[9] | Sun H L, Huo M W, Hu X W et al. 2023 Nature 621 493 |
[10] | Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, and Cheng J G 2024 Phys. Rev. X 14 011040 |
[11] | Shen Y, Qin M P, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 |
[12] | Jiang K, Wang Z, and Zhang F C 2024 Chin. Phys. Lett. 41 017402 |
[13] | Wang M, Wen H H, Wu T, Yao D X, and Xiang T 2024 Chin. Phys. Lett. 41 077402 |
[14] | Zhu Y et al. 2024 Nature 631 531 |
[15] | Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2024 Phys. Rev. B 109 144511 |
[16] | Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, and Wen H H 2024 Chin. Phys. Lett. 41 017401 |
[17] | Zhang M X, Pei C Y, Du X et al. 2023 arXiv:2311.07423 [cond-mat.supr-con] |
[18] | Thanh T D, Van H T, Thu D T A, Bau L V, Van Dang N, Nam D N H, Hong L V, and Yu S C 2017 IEEE Trans. Magn. 53 8204904 |
[19] | Burns G, Dacol F H, Rice D E, Buttrey D J, and Crawford M K 1990 Phys. Rev. B 42 10777 |
[20] | Jorgensen J D, Dabrowski B, Pei S Y, Richards D R, and Hinks D G 1989 Phys. Rev. B 40 2187 |
[21] | Ka̧kol Z, Spałek J, and Honig J M 1989 J. Solid State Chem. 79 288 |
[22] | Ka̧kol Z, Spałek J, and Honig J M 1989 Solid State Commun. 71 283 |
[23] | Nanjundaswamy K S, Lewicki A, Kakol Z, Gopalan P, Metcalf P, Honig J M, Rao C N R, and SpaŁek J 1990 Physica C 166 361 |
[24] | Acrivos J V, Lei M C, Jiang C, Nguyen H, Metcalf P, and Honig J M 1994 J. Solid State Chem. 111 343 |
[25] | Ganguli A K, Nagarajan R, Rao G R, Vasanthacharya N Y, and Rao C N R 1989 Solid State Commun. 72 195 |
[26] | Spałek J, Ka̧kol Z, and Honig J M 1989 Solid State Commun. 71 511 |
[27] | Poirot N, Odier P, Simon P, and Gervais F 2003 Solid State Sci. 5 735 |
[28] | Saleem M, Singh D, Mishra A, and Varshney D 2019 Mater. Res. Express 6 026304 |
[29] | Zhou N, Chen G, Zhang H J, and Zhou C 2009 Physica B 404 4150 |
[30] | Sayer M and Odier P 1987 J. Solid State Chem. 67 26 |
[31] | Vashook V V, Trofimenko N E, Ullmann H, and Makhnach L V 2000 Solid State Ionics 131 329 |
[32] | Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2024 J. Mater. Sci. & Technol. 185 147 |
[33] | Hosoya T, Igawa K, Takeuchi Y, Yoshida K, Uryu T, Hirabayashi H, and Takahashi H 2008 J. Phys.: Conf. Ser. 121 052013 |
[34] | Gao R, Jin L, Huyan S, Ni D, Wang H, Xu X, Bud'ko S L, Canfield P, Xie W, and Cava R J 2024 ACS Appl. Mater. Interfaces |
[35] | Rice D E and Buttrey D J 1993 J. Solid State Chem. 105 197 |
[36] | Hücker M, Chung K, Chand M, Vogt T, Tranquada J M, and Buttrey D J 2004 Phys. Rev. B 70 064105 |
[37] | Udagawa M, Yamaguchi T, Nagaoka Y, Ogita N, Kato M, Maeno Y, Fujita T, and Ohbayashi K 1993 Phys. Rev. B 47 11391 |
[38] | Bates F E and Eldridge J E 1989 Solid State Commun. 72 187 |
[39] | Zhou X, Qin P, Feng Z, Yan H, Wang X, Chen H, Meng Z, and Liu Z 2022 Mater. Today 55 170 |
[40] | Wu G and Neumeier J J 2003 Phys. Rev. B 67 125116 |
[41] | Nikonov A A and Parfenov O E 2003 J. Exp. Theor. Phys. Lett. 78 25 |
[42] | Wochner P, Tranquada J M, Buttrey D J, and Sachan V 1998 Phys. Rev. B 57 1066 |
[43] | Periyasamy M, Patra L, Fjellvåg Ø S, Ravindran P, Sørby M H, Kumar S, Sjåstad A O, and Fjellvåg H 2021 ACS Appl. Electron. Mater. 3 2671 |
[44] | Li F Y, Guo N, Zheng Q, Shen Y, Wang S L, Cui Q H, Liu C, Wang S P, Tao X T, Zhang G M, and Zhang J J 2024 Phys. Rev. Mater. 8 053401 |
[45] | Mott N F 1968 Rev. Mod. Phys. 40 677 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|