Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097402    DOI: 10.1088/0256-307X/41/9/097402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Unveiling a Novel Insulator-to-Metal Transition in La$_{2}$NiO$_{4+\delta}$: Challenging High-Temperature Superconductivity Claimed for Single-Layer Lanthanum Nickelates
Yunqi Ji, Xiaohan Wang, Xiaohe Li, Wenting Tang, Xinyang Li, Xin Wang, Fangfei Li*, Liang Li*, and Qiang Zhou
Synergetic Extreme Condition User Facility, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Yunqi Ji, Xiaohan Wang, Xiaohe Li et al  2024 Chin. Phys. Lett. 41 097402
Download: PDF(2935KB)   PDF(mobile)(3802KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract La$_{2}$NiO$_{4}$ has a similar structure to La$_{2}$CuO$_{4}$ and was proposed as a high-temperature superconductor based on magnetic-moment measurements decades ago. Nevertheless, with the exception for electrical resistance drop behavior of about 4 orders of magnitude that is claimed to originate from the superconductivity ever observed in Sr-doped La$_{2}$NiO$_{4}$, most electrical data reported to date in La$_{2}$NiO$_{4}$ system exhibit a trivial insulating ground state. Here, we definitively identify the similar electrical resistance drop behavior of more than 3 orders of magnitude in La$_{2}$NiO$_{4+\delta}$. However, our extensive investigations reveal that this phenomenon is a novel insulator-to-metal transition, distinct from superconductivity. Intriguingly, compared to the weak magnetic-field effects, pressure can significantly suppress the transition and transform from the metallic to an insulating ground state, accompanied by an isostructural phase transition. Our work not only elucidates the fundamental properties of the metallic conducting ground state in La$_{2}$NiO$_{4+\delta}$, but also critically challenges the notion of superconductivity in single-layer lanthanum nickelates.
Received: 13 May 2024      Published: 19 September 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.43.Nq (Quantum phase transitions)  
  72.60.+g (Mixed conductivity and conductivity transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097402       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunqi Ji
Xiaohan Wang
Xiaohe Li
Wenting Tang
Xinyang Li
Xin Wang
Fangfei Li
Liang Li
and Qiang Zhou
[1] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[2] Zachar O, Kivelson S A, and Emery V J 1998 Phys. Rev. B 57 1422
[3] Lechermann F 2020 Phys. Rev. B 101 081110
[4] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[5] Zeng S W, Li C J, Chow L E et al. 2022 Sci. Adv. 8 eabl9927
[6] Gu Q Q and Wen H H 2022 Innovation 3 100202
[7] Wu X, Di Sante D, Schwemmer T, Hanke W, Hwang H Y, Raghu S, and Thomale R 2020 Phys. Rev. B 101 060504
[8] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302
[9] Sun H L, Huo M W, Hu X W et al. 2023 Nature 621 493
[10] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, and Cheng J G 2024 Phys. Rev. X 14 011040
[11] Shen Y, Qin M P, and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[12] Jiang K, Wang Z, and Zhang F C 2024 Chin. Phys. Lett. 41 017402
[13] Wang M, Wen H H, Wu T, Yao D X, and Xiang T 2024 Chin. Phys. Lett. 41 077402
[14] Zhu Y et al. 2024 Nature 631 531
[15] Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2024 Phys. Rev. B 109 144511
[16] Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, and Wen H H 2024 Chin. Phys. Lett. 41 017401
[17] Zhang M X, Pei C Y, Du X et al. 2023 arXiv:2311.07423 [cond-mat.supr-con]
[18] Thanh T D, Van H T, Thu D T A, Bau L V, Van Dang N, Nam D N H, Hong L V, and Yu S C 2017 IEEE Trans. Magn. 53 8204904
[19] Burns G, Dacol F H, Rice D E, Buttrey D J, and Crawford M K 1990 Phys. Rev. B 42 10777
[20] Jorgensen J D, Dabrowski B, Pei S Y, Richards D R, and Hinks D G 1989 Phys. Rev. B 40 2187
[21] Ka̧kol Z, Spałek J, and Honig J M 1989 J. Solid State Chem. 79 288
[22] Ka̧kol Z, Spałek J, and Honig J M 1989 Solid State Commun. 71 283
[23] Nanjundaswamy K S, Lewicki A, Kakol Z, Gopalan P, Metcalf P, Honig J M, Rao C N R, and SpaŁek J 1990 Physica C 166 361
[24] Acrivos J V, Lei M C, Jiang C, Nguyen H, Metcalf P, and Honig J M 1994 J. Solid State Chem. 111 343
[25] Ganguli A K, Nagarajan R, Rao G R, Vasanthacharya N Y, and Rao C N R 1989 Solid State Commun. 72 195
[26] Spałek J, Ka̧kol Z, and Honig J M 1989 Solid State Commun. 71 511
[27] Poirot N, Odier P, Simon P, and Gervais F 2003 Solid State Sci. 5 735
[28] Saleem M, Singh D, Mishra A, and Varshney D 2019 Mater. Res. Express 6 026304
[29] Zhou N, Chen G, Zhang H J, and Zhou C 2009 Physica B 404 4150
[30] Sayer M and Odier P 1987 J. Solid State Chem. 67 26
[31] Vashook V V, Trofimenko N E, Ullmann H, and Makhnach L V 2000 Solid State Ionics 131 329
[32] Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2024 J. Mater. Sci. & Technol. 185 147
[33] Hosoya T, Igawa K, Takeuchi Y, Yoshida K, Uryu T, Hirabayashi H, and Takahashi H 2008 J. Phys.: Conf. Ser. 121 052013
[34] Gao R, Jin L, Huyan S, Ni D, Wang H, Xu X, Bud'ko S L, Canfield P, Xie W, and Cava R J 2024 ACS Appl. Mater. Interfaces
[35] Rice D E and Buttrey D J 1993 J. Solid State Chem. 105 197
[36] Hücker M, Chung K, Chand M, Vogt T, Tranquada J M, and Buttrey D J 2004 Phys. Rev. B 70 064105
[37] Udagawa M, Yamaguchi T, Nagaoka Y, Ogita N, Kato M, Maeno Y, Fujita T, and Ohbayashi K 1993 Phys. Rev. B 47 11391
[38] Bates F E and Eldridge J E 1989 Solid State Commun. 72 187
[39] Zhou X, Qin P, Feng Z, Yan H, Wang X, Chen H, Meng Z, and Liu Z 2022 Mater. Today 55 170
[40] Wu G and Neumeier J J 2003 Phys. Rev. B 67 125116
[41] Nikonov A A and Parfenov O E 2003 J. Exp. Theor. Phys. Lett. 78 25
[42] Wochner P, Tranquada J M, Buttrey D J, and Sachan V 1998 Phys. Rev. B 57 1066
[43] Periyasamy M, Patra L, Fjellvåg Ø S, Ravindran P, Sørby M H, Kumar S, Sjåstad A O, and Fjellvåg H 2021 ACS Appl. Electron. Mater. 3 2671
[44] Li F Y, Guo N, Zheng Q, Shen Y, Wang S L, Cui Q H, Liu C, Wang S P, Tao X T, Zhang G M, and Zhang J J 2024 Phys. Rev. Mater. 8 053401
[45] Mott N F 1968 Rev. Mod. Phys. 40 677
Related articles from Frontiers Journals
[1] Zhiming Pan, Chen Lu, Fan Yang, and Congjun Wu. Effect of Rare-Earth Element Substitution in Superconducting R$_3$Ni$_2$O$_7$ under Pressure[J]. Chin. Phys. Lett., 2024, 41(8): 097402
[2] Jie-Ran Xue and Fa Wang. Magnetism and Superconductivity in the $t$–$J$ Model of La$_3$Ni$_2$O$_7$ Under Multiband Gutzwiller Approximation[J]. Chin. Phys. Lett., 2024, 41(5): 097402
[3] Qing Li, Ying-Jie Zhang, Zhe-Ning Xiang, Yuhang Zhang, Xiyu Zhu, and Hai-Hu Wen. Signature of Superconductivity in Pressurized La$_{4}$Ni$_{3}$O$_{10}$[J]. Chin. Phys. Lett., 2024, 41(1): 097402
[4] Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang. High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(1): 097402
[5] Yang Shen, Mingpu Qin, and Guang-Ming Zhang. Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure[J]. Chin. Phys. Lett., 2023, 40(12): 097402
[6] Jun Hou, Peng-Tao Yang, Zi-Yi Liu, Jing-Yuan Li, Peng-Fei Shan, Liang Ma, Gang Wang, Ning-Ning Wang, Hai-Zhong Guo, Jian-Ping Sun, Yoshiya Uwatoko, Meng Wang, Guang-Ming Zhang, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of High-Temperature Superconducting Phase in Pressurized La$_{3}$Ni$_{2}$O$_7$ Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 097402
[7] Run Lv, Wenqian Tu, Dingfu Shao, Yuping Sun, and Wenjian Lu. Physical Origin of Color Changes in Lutetium Hydride under Pressure[J]. Chin. Phys. Lett., 2023, 40(11): 097402
[8] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 097402
[9] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 097402
[10] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 097402
[11] Yueying Li, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu, and Yuefeng Nie. Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2023, 40(7): 097402
[12] Fankai Xie, Tenglong Lu, Ze Yu, Yaxian Wang, Zongguo Wang, Sheng Meng, and Miao Liu. Lu–H–N Phase Diagram from First-Principles Calculations[J]. Chin. Phys. Lett., 2023, 40(5): 097402
[13] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 097402
[14] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 097402
[15] Bing Huang. What Are the Roles of Hydrogen in Infinite-Layer Nickelates?[J]. Chin. Phys. Lett., 2023, 40(5): 097402
Viewed
Full text


Abstract