Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097403    DOI: 10.1088/0256-307X/41/9/097403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fermi Surface Nesting with Heavy Quasiparticles in the Locally Noncentrosymmetric Superconductor CeRh$_{2}$As$_{2}$
Yi Wu1†, Yongjun Zhang2†, Sailong Ju3, Yong Hu3, Yanen Huang1, Yanan Zhang1, Huali Zhang1, Hao Zheng1, Guowei Yang1, Evrard-Ouicem Eljaouhari4, Baopeng Song2, Nicholas C. Plumb3, Frank Steglich1,5, Ming Shi1,3, Gertrud Zwicknagl4,5, Chao Cao1*, Huiqiu Yuan1,6,7*, and Yang Liu1,6*
1Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China
2Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
3Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
4Institut for Mathematische Physik, 38106 Braunschweig, Germany
5Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
6Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
7State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China
Cite this article:   
Yi Wu, Yongjun Zhang, Sailong Ju et al  2024 Chin. Phys. Lett. 41 097403
Download: PDF(6760KB)   PDF(mobile)(7743KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The locally noncentrosymmetric heavy fermion superconductor CeRh$_{2}$As$_{2}$ has attracted considerable interests due to its rich superconducting phases, accompanied by possible quadrupole density wave and pronounced antiferromagnetic excitations. To understand the underlying physics, here we report measurements from high-resolution angle-resolved photoemission. Our results reveal fine splittings of the conduction bands related to the locally noncentrosymmetric structure, as well as a quasi-two-dimensional Fermi surface (FS) with strong $4f$ contributions. The FS shows signs of nesting with an in-plane vector ${\boldsymbol q}_1 = (\pi/a$, $\pi/a$), which is facilitated by the heavy bands near $\bar{X}$ arising from the characteristic conduction-$f$ hybridization. The FS nesting provides a natural explanation for the observed antiferromagnetic spin fluctuations at ($\pi/a$, $\pi/a$), which might be the driving force for its unconventional superconductivity. Our experimental results can be reasonably explained by density functional theory plus dynamical mean field theory calculations, which can capture the strong correlation effects. Our study not only provides spectroscopic signature of the key factors underlying the field-induced superconducting transition, but also uncovers the critical role of FS nesting and lattice Kondo effect in the underlying magnetic fluctuations.
Received: 14 August 2024      Editors' Suggestion Published: 24 September 2024
PACS:  74.90.+n (Other topics in superconductivity)  
  74.70.Tx (Heavy-fermion superconductors)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097403       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi Wu
Yongjun Zhang
Sailong Ju
Yong Hu
Yanen Huang
Yanan Zhang
Huali Zhang
Hao Zheng
Guowei Yang
Evrard-Ouicem Eljaouhari
Baopeng Song
Nicholas C. Plumb
Frank Steglich
Ming Shi
Gertrud Zwicknagl
Chao Cao
Huiqiu Yuan
and Yang Liu
[1] Khim S, Landaeta J F, Banda J, Bannor N, Brando M, Brydon P M R, Hafner D, Küchler R, Cardoso-Gil R, Stockert U, Mackenzie A P, Agterberg D F, Geibel C, and Hassinger E 2021 Science 373 1012
[2] Landaeta J F, Khanenko P, Cavanagh D C, Geibel C, Khim S, Mishra S, Sheikin I, Brydon P M R, Agterberg D F, Brando M, and Hassinger E 2022 Phys. Rev. X 12 031001
[3] Yoshida T, Sigrist M, and Yanase Y 2012 Phys. Rev. B 86 134514
[4] Nogaki K, Daido A, Ishizuka J, and Yanase Y 2021 Phys. Rev. Res. 3 L032071
[5] Möckli D and Ramires A 2021 Phys. Rev. Res. 3 023204
[6] Skurativska A, Sigrist M, and Fischer M H 2021 Phys. Rev. Res. 3 033133
[7] Cavanagh D C, Shishidou T, Weinert M, Brydon P M R, and Agterberg D F 2022 Phys. Rev. B 105 L020505
[8] Schertenleib E G, Fischer M H, and Sigrist M 2021 Phys. Rev. Res. 3 023179
[9] Möckli D and Ramires A 2021 Phys. Rev. B 104 134517
[10] Fischer M H, Sigrist M, Agterberg D F, and Yanase Y 2022 arXiv:2204.02449 [cond-mat.supr-con]
[11] Siddiquee H, Rehfuss Z, Broyles C, and Ran S 2022 arXiv:2212.06930 [cond-mat.supr-con]
[12] Chen T, Siddiquee H, Rehfuss Z, Gao S Y, Lygouras C, Drouin J, Morano V, Avers K E, Schmitt C J, Podlesnyak A, Ran S, Song Y, and Broholm C 2024 arXiv:2406.03566 [cond-mat.str-el]
[13] Kibune M, Kitagawa S, Kinjo K, Ogata S, Manago M, Taniguchi T, Ishida K, Brando M, Hassinger E, Rosner H, Geibel C, and Khim S 2022 Phys. Rev. Lett. 128 057002
[14] Khim S, Stockert O, Brando M, Geibel C, Baines C, Hicken T J, Luetkens H, Das D, Shiroka T, Guguchia Z, and Scheuermann R 2024 arXiv:2406.16575 [cond-mat.str-el]
[15] Hafner D, Khanenko P, Eljaouhari E O, Küchler R, Banda J, Bannor N, Lühmann T, Landaeta J F, Mishra S, Sheikin I, Hassinger E, Khim S, Geibel C, Zwicknagl G, and Brando M 2022 Phys. Rev. X 12 011023
[16] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[17] Smidman M, Stockert O, Nica E M, Liu Y, Yuan H, Si Q, and Steglich F 2023 Rev. Mod. Phys. 95 031002
[18] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z, and Monthoux P 2001 J. Phys.: Condens. Matter 13 L337
[19] Lee C, Agterberg D F, and Brydon P M R 2024 arXiv:2407.00536 [cond-mat.supr-con]
[20] Zwicknagl G 2016 Rep. Prog. Phys. 79 124501
[21] Nogaki K and Yanase Y 2022 Phys. Rev. B 106 L100504
[22] Hazra T and Coleman P 2023 Phys. Rev. Lett. 130 136002
[23] Machida K 2022 Phys. Rev. B 106 184509
[24] Ishizuka J, Nogaki K, Sigrist M, and Yanase Y 2023 arXiv:2311.00324 [cond-mat.supr-con]
[25] Ptok A, Kapcia K J, Jochym P T, Łażewski J, Oleś A M, and Piekarz P 2021 Phys. Rev. B 104 L041109
[26]See the Supplementary Material, which includes Refs.[27–38] and details on crystal growth, characterizations, ARPES measurements and calculations.
[27] Ernst S, Kirchner S, Krellner C, Geibel C, Zwicknagl G, Steglich F, and Wirth S 2011 Nature 474 362
[28] Wirth S and Steglich F 2016 Nat. Rev. Mater. 1 16051
[29] Shen S, Qin T, Gao J, Wen C, Wang J, Wang W, Li J, Luo X, Lu W, Sun Y, and Yan S 2022 Chin. Phys. Lett. 39 077401
[30] Kimura S i, Sichelschmidt J, and Khim S 2021 Phys. Rev. B 104 245116
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685
[35] Zhi G X, Xu C C, Wu S Q, Ning F L, and Cao C 2022 Comput. Phys. Commun. 271 108196
[36] Haule K, Yee C H, and Kim K 2010 Phys. Rev. B 81 195107
[37] Schwarz K, Blaha P, and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[38] Haule K 2007 Phys. Rev. B 75 155113
[39] Denlinger J D, Gweon G H, Allen J W, Olson C G, Maple M B, Sarrao J L, Armstrong P E, Fisk Z, and Yamagami H 2001 J. Electron Spectrosc. Relat. Phenom. 117–118 347
[40] Wu Z Z, Fang Y, Su H, Xie W, Li P, Wu Y, Huang Y B, Shen D W, Thiagarajan B, Adell J, Cao C, Yuan H Q, Steglich F, and Liu Y 2021 Phys. Rev. Lett. 127 067002
[41] Sekiyama A, Iwasaki T, Matsuda K, Saitoh Y, Ônuki Y, and Suga S 2000 Nature 403 396
[42] Allen J W 2005 J. Phys. Soc. Jpn. 74 34
[43] Fujimori S i 2016 J. Phys.: Condens. Matter 28 153002
[44] Im H J, Ito T, Kim H D, Kimura S, Lee K E, Hong J B, Kwon Y S, Yasui A, and Yamagami H 2008 Phys. Rev. Lett. 100 176402
[45] Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, and Feng D L 2017 Phys. Rev. B 96 045107
[46] Jang S, Denlinger J D, Allen J W, Zapf V S, Maple M B, Kim J N, Jang B G, and Shim J H 2020 Proc. Natl. Acad. Sci. USA 117 23467
[47] Kirchner S, Paschen S, Chen Q, Wirth S, Feng D, Thompson J D, and Si Q 2020 Rev. Mod. Phys. 92 011002
[48] Wu Y, Zhang Y, Du F, Shen B, Zheng H, Fang Y, Smidman M, Cao C, Steglich F, Yuan H, Denlinger J D, and Liu Y 2021 Phys. Rev. Lett. 126 216406
[49] Yuan Y H, Duan Y X, Rusz J, Zhang C, Song J J, Wu Q Y, Sassa Y, Tjernberg O, Månsson M, Berntsen M H, Wu F Y, Liu S Y, Liu H, Zhu S X, Liu Z T, Zhao Y Z, Tobash P H, Bauer E D, Thompson J D, Oppeneer P M, Durakiewicz T, and Meng J Q 2021 Phys. Rev. B 103 125122
[50] Chen X Z, Wang L, Ishizuka J, Zhang R J, Nogaki K, Cheng Y W, Yang F Z, Chen Z H, Zhu F Y, Liu Z T, Mei J W, Yanase Y, Lv B Q, and Huang Y B 2024 Phys. Rev. X 14 021048
[51] Cameron A S, Friemel G, and Inosov D S 2016 Rep. Prog. Phys. 79 066502
[52] Koitzsch A, Heming N, Knupfer M, Büchner B, Portnichenko P Y, Dukhnenko A V, Shitsevalova N Y, Filipov V B, Lev L L, Strocov V N, Ollivier J, and Inosov D S 2016 Nat. Commun. 7 10876
[53] Jang D, Portnichenko P Y, Cameron A S, Friemel G, Dukhnenko A V, Shitsevalova N Y, Filipov V B, Schneidewind A, Ivanov A, Inosov D S, and Brando M 2017 npj Quantum Mater. 2 62
[54] Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S, and Feng D L 2018 Phys. Rev. B 97 075149
[55] Ehm D, Hüfner S, Reinert F, Kroha J, Wölfle P, Stockert O, Geibel C, and Löhneysen H V 2007 Phys. Rev. B 76 045117
[56] Patil S, Generalov A, Güttler M, Kushwaha P, Chikina A, Kummer K, Rödel T C, Santander-Syro A F, Caroca-Canales N, Geibel C, Danzenbächer S, Kucherenko Y, Laubschat C, Allen J W, and Vyalikh D V 2016 Nat. Commun. 7 11029
[57] Christovam D S, Ferreira-Carvalho M, Marino A, Sundermann M, Takegami D, Melendez-Sans A, Tsuei K D, Hu Z W, Rößler S, Valvidares M, Haverkort M W, Liu Y, Bauer E D, Tjeng L H, Zwicknagl G, and Severing A 2024 Phys. Rev. Lett. 132 046401
[58] Liu Y 2021 Sci. Chin. Phys. Mech. & Astron. 64 127431
[59] McElroy K, Gweon G H, Zhou S Y, Graf J, Uchida S, Eisaki H, Takagi H, Sasagawa T, Lee D H, and Lanzara A 2006 Phys. Rev. Lett. 96 067005
[60] Chatterjee U, Shi M, Kaminski A, Kanigel A, Fretwell H M, Terashima K, Takahashi T, Rosenkranz S, Li Z Z, Raffy H, Santander-Syro A, Kadowaki K, Norman M R, Randeria M, and Campuzano J C 2006 Phys. Rev. Lett. 96 107006
[61] Shen D W, Xie B P, Zhao J F, Yang L X, Fang L, Shi J, He R H, Lu D H, Wen H H, and Feng D L 2007 Phys. Rev. Lett. 99 216404
[62] Eremin I, Zwicknagl G, Thalmeier P, and Fulde P 2008 Phys. Rev. Lett. 101 187001
[63] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q, and Steglich F 2011 Nat. Phys. 7 119
[64] Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P, and Komatsubara T 2001 Nature 410 340
[65] Stockert O and Steglich F 2023 Physica C 615 1354375
[66] Mydosh J A and Oppeneer P M 2011 Rev. Mod. Phys. 83 1301
[67] Ikeda H, Suzuki M T, Arita R, Takimoto T, Shibauchi T, and Matsuda Y 2012 Nat. Phys. 8 528
[68] Wang X, Gong D, Liu B, Ma X, Zhao J, Wang P, Sheng Y, Guo J, Sun L, Zhang W, Lai X, Tan S, Yang Y F, and Li S 2022 Chin. Phys. Lett. 39 107101
[69] Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, and Mydosh J A 1987 Phys. Rev. Lett. 58 1467
[70] Broholm C, Lin H, Matthews P T, Mason T E, Buyers W J L, Collins M F, Menovsky A A, Mydosh J A, and Kjems J K 1991 Phys. Rev. B 43 12809
[71] Wiebe C R, Janik J A, MacDougall G J, Luke G M, Garrett J D, Zhou H D, Jo Y J, Balicas L, Qiu Y, Copley J R D, Yamani Z, and Buyers W J L 2007 Nat. Phys. 3 96
[72] Santander-Syro A F, Klein M, Boariu F L, Nuber A, Lejay P, and Reinert F 2009 Nat. Phys. 5 637
[73] Boariu F L, Bareille C, Schwab H, Nuber A, Lejay P, Durakiewicz T, Reinert F, and Santander-Syro A F 2013 Phys. Rev. Lett. 110 156404
[74] Chatterjee S, Trinckauf J, Hänke T, Shai D E, Harter J W, Williams T J, Luke G M, Shen K M, and Geck J 2013 Phys. Rev. Lett. 110 186401
[75] Meng J Q, Oppeneer P M, Mydosh J A, Riseborough P S, Gofryk K, Joyce J J, Bauer E D, Li Y, and Durakiewicz T 2013 Phys. Rev. Lett. 111 127002
[76] Yoshida R, Nakamura Y, Fukui M, Haga Y, Yamamoto E, Ōnuki Y, Okawa M, Shin S, Hirai M, Muraoka Y, and Yokoya T 2010 Phys. Rev. B 82 205108
[77] Zhang W, Lu H Y, Xie D H, Feng W, Tan S Y, Liu Y, Zhu X G, Zhang Y, Hao Q Q, Huang Y B, Lai X C, and Chen Q Y 2018 Phys. Rev. B 98 115121
[78] Denlinger J D, Kang J S, Dudy L, Allen J W, Kim K, Shim J H, Haule K, Sarrao J L, Butch N P, and Maple M B 2022 Electron. Struct. 4 013001
[79] Mishra S, Liu Y, Bauer E D, Ronning F, and Thomas S M 2022 Phys. Rev. B 106 L140502
[80] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[81] Chen B, Liu H, Wu Q Y, Zhang C, Ye X Q, Zhao Y Z, Song J J, Tian X Y, Tan B L, Liu Z T, Ye M, Chen Z H, Huang Y B, Shen D W, Yuan Y H, He J, Duan Y X, and Meng J Q 2024 Phys. Rev. B 110 L041120
Related articles from Frontiers Journals
[1] Yang Shen, Mingpu Qin, and Guang-Ming Zhang. Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure[J]. Chin. Phys. Lett., 2023, 40(12): 097403
[2] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 097403
[3] GAO Zhi-Wen, ZHOU You-He. Mode-II Crack Problem for a Long Rectangular Slab of Superconductor under an Electromagnetic Force[J]. Chin. Phys. Lett., 2009, 26(2): 097403
[4] ZHOU Yong, WANG Gui-Ling, LI Cheng-Ming, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian, LIU Guo-Dong, DONG Xiao-Li, ZHOU Xing-Jiang. Sixth Harmonic of A Nd:YVO4 Laser Generation In KBBF for ARPES[J]. Chin. Phys. Lett., 2008, 25(3): 097403
[5] CHENG Ze. Photonic Superfluidity in a Kerr Nonlinear Black Body[J]. Chin. Phys. Lett., 2005, 22(4): 097403
[6] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System[J]. Chin. Phys. Lett., 2003, 20(2): 097403
[7] LI Qin, FU Ze-Lu, JI Zheng-Ming, FENG Yi-Jun, KANG Lin, YANG Sen-Zu, WU Pei-Heng, WANG Xiao-Shu, YE Yu-Da. Experimental Study of the Plasma Fluorination of Y-Ba-Cu-O Thin Films[J]. Chin. Phys. Lett., 2002, 19(9): 097403
[8] Yu. V. Kislinskii, ZHAO Bai-ru, WU Pei-jun, PENG Zhi-qiang, CHEN Ying-fei, YANG Tao, CHEN Lie, SUN Ji-jun, XU Bo, WU Fei, ZHOU Yue-liang, LI Lin, ZHAO Zhong-xian, E. A. Stepantsov. YBa2Cu3O7 Bicrystal Josephson Junctions and dc SQUIDs[J]. Chin. Phys. Lett., 1996, 13(5): 097403
[9] CHEN Yingfei, CHEN Lie, TAO Hongjie, LI Jingdong, WU Peijun, YANG Qiansheng, SHAO Kai* . Properties of DC SQUIDs Made from YBCO and TBCCO Films[J]. Chin. Phys. Lett., 1992, 9(2): 097403
Viewed
Full text


Abstract