Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097401    DOI: 10.1088/0256-307X/41/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Chiral Pair Density Waves with Residual Fermi Arcs in RbV$_{3}$Sb$_{5}$
Xiao-Yu Yan1†, Hanbin Deng1†, Tianyu Yang1†, Guowei Liu1, Wei Song1, Hu Miao2, Zhijun Tu3,4 Hechang Lei3,4, Shuo Wang5,6, Ben-Chuan Lin5,6, Hailang Qin7*, and Jia-Xin Yin1,7*
1Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3Beijing Key Laboratory of Optoelectronic Functional Materials MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
4Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
5Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
6Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
7Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518055, China
Cite this article:   
Xiao-Yu Yan, Hanbin Deng, Tianyu Yang et al  2024 Chin. Phys. Lett. 41 097401
Download: PDF(10135KB)   PDF(mobile)(10028KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The chiral $2\times 2$ charge order has been reported and confirmed in the kagome superconductor RbV$_{3}$Sb$_{5}$, while its interplay with superconductivity remains elusive owing to its lowest superconducting transition temperature $T_{\scriptscriptstyle{\rm C}}$ of about 0.85 K in the AV$_{3}$Sb$_{5}$ family (A = K, Rb, Cs) that severely challenges electronic spectroscopic probes. Here, utilizing dilution-refrigerator-based scanning tunneling microscopy down to 30 mK, we observe chiral $2\times 2$ pair density waves with residual Fermi arcs in RbV$_{3}$Sb$_{5}$. We find a superconducting gap of 150 µeV with substantial residual in-gap states. The spatial distribution of this gap exhibits chiral $2\times 2$ modulations, signaling a chiral pair density wave (PDW). Our quasi-particle interference imaging of the zero-energy residual states further reveals arc-like patterns. We discuss the relation of the gap modulations with the residual Fermi arcs under the space-momentum correspondence between PDW and Bogoliubov Fermi states.
Received: 16 July 2024      Express Letter Published: 13 August 2024
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Yu Yan
Hanbin Deng
Tianyu Yang
Guowei Liu
Wei Song
Hu Miao
Zhijun Tu Hechang Lei
Shuo Wang
Ben-Chuan Lin
Hailang Qin
and Jia-Xin Yin
[1] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[2] Wilson S D and Ortiz B R 2024 Nat. Rev. Mater. 9 420
[3] Wang N N, Chen K Y, Yin Q W et al. 2021 Phys. Rev. Res. 3 043018
[4] Du F, Luo S S, Li R, Ortiz B R, Chen Y, Wilson S D, Song Y, and Yuan H Q 2022 Chin. Phys. B 31 017404
[5] Guguchia Z, Mielke III C, Das D et al. 2023 Nat. Commun. 14 153
[6] Wang S, Fang J Z, Wu Z N et al. 2024 Commun. Phys. 7 15
[7] Wang S, Feng X L, Fang J Z et al. 2024 arXiv:2405.12592 [cond-mat.str-el]
[8] Deng H et al. 2024 Nature (accepted)
[9] Li H X, Zhang T T, Yilmaz T et al. 2021 Phys. Rev. X 11 031050
[10] Shumiya N, Hossain M S, Yin J X et al. 2021 Phys. Rev. B 104 035131
[11] Xing Y Q, Bae S, Ritz E et al. 2024 Nature 631 60
[12] Agterberg D F, Séamus Davis J C, Edkins S D et al. 2020 Annu. Rev. Condens. Matter Phys. 11 231
[13] Hamidian M H, Edkins S D, Joo S H et al. 2016 Nature 532 343
[14] Du Z Y, Li H, Joo S H et al. 2020 Nature 580 65
[15] Liu X, Chong Y X, Sharma R, and Davis J C S 2021 Science 372 1447
[16] Chen H, Yang H T, Hu B et al. 2021 Nature 599 222
[17] Jin J T, Jiang K, Yao H, and Zhou Y 2022 Phys. Rev. Lett. 129 167001
[18] Wu Y M, Thomale R, and Raghu S 2023 Phys. Rev. B 108 L081117
[19] Mohanta N 2023 Phys. Rev. B 108 L220507
[20] Zhao H, Li H, Ortiz B R et al. 2021 Nature 599 216
[21] Yu J W, Xu Z A, Xiao K B et al. 2022 Nano Lett. 22 918
[22] Wu P, Tu Y B, Wang Z Y et al. 2023 Nat. Phys. 19 1143
[23] Liu Z H, Zhao N N, Yin Q W et al. 2021 Phys. Rev. X 11 041010
[24] Feng X, Jiang K, Wang Z, and Hu J 2021 Sci. Bull. 66 1384
[25] Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122
[26] Park T, Ye M X, and Balents L 2021 Phys. Rev. B 104 035142
[27] Denner M M, Thomale R, and Neupert T 2021 Phys. Rev. Lett. 127 217601
[28] Wang Y J, Yang S Y, Sivakumar P K et al. 2023 Sci. Adv. 9 eadg7269
[29] Ge J, Wang P Y, Xing Y et al. 2024 Phys. Rev. X 14 021025
[30] Le T, Pan Z M, Xu Z K et al. 2024 Nature 630 64
[31] Sharma R, Edkins S D, Wang Z Y et al. 2020 Proc. Natl. Acad. Sci. USA 117 5222
[32] Gu Q Q, Carroll J P, Wang S Q et al. 2023 Nature 618 921
[33] Jiang Z C, Ma H Y, Xia W et al. 2023 Nano Lett. 23 5625
Related articles from Frontiers Journals
[1] Jie-Ran Xue and Fa Wang. Magnetism and Superconductivity in the $t$–$J$ Model of La$_3$Ni$_2$O$_7$ Under Multiband Gutzwiller Approximation[J]. Chin. Phys. Lett., 2024, 41(5): 097401
[2] Jiacheng Ye, Jun Li, DingYong Zhong, and Dao-Xin Yao. Possible Superconductivity in Biphenylene[J]. Chin. Phys. Lett., 2023, 40(7): 097401
[3] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 097401
[4] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 097401
[5] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 097401
[6] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 097401
[7] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 097401
[8] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 097401
[9] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 097401
[10] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 097401
[11] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 097401
[12] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 097401
[13] GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong. Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers[J]. Chin. Phys. Lett., 2015, 32(06): 097401
[14] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 097401
[15] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 097401
Viewed
Full text


Abstract