CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Floquet-Engineering Topological Phase Transition in Graphene Nanoribbons by Light |
Anhua Huang1,2, Shasha Ke1,2, Ji-Huan Guan1,2, Jun Li3, and Wen-Kai Lou1,2* |
1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3Department of Physics, School of Physical Science and Technology, Xiamen University, Xiamen 361005, China
|
|
Cite this article: |
Anhua Huang, Shasha Ke, Ji-Huan Guan et al 2024 Chin. Phys. Lett. 41 097302 |
|
|
Abstract Quasi-one-dimensional (1D) graphene nanoribbons (GNRs) play a crucial role in advancement of next-generation devices. Recent studies have suggested their potential to exhibit unique symmetry-protected topological phases defined by a $Z_2$ invariant. By employing both the tight-binding model and the Floquet theory, our investigation demonstrates the effective control of the topological phase within quasi-1D armchair GNRs (AGNRs) using elliptically polarized light, unveiling rich topological phase diagrams. Specifically, we observe that varying the amplitude of the light can induce transitions in the band gap ($E_{\rm g}$) of AGNRs, leading to multiple changes in the system's $Z_2$ invariant. Furthermore, for heterojunctions composed of different AGNR segments, the junction state can be either created or eliminated by the application of elliptically polarized light.
|
|
Received: 18 June 2024
Published: 24 September 2024
|
|
PACS: |
72.80.Vp
|
(Electronic transport in graphene)
|
|
61.46.+w
|
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
|
|
|
[1] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 |
[2] | Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 |
[3] | Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757 |
[4] | Fu L and Kane C L 2007 Phys. Rev. B 76 045302 |
[5] | Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, and Zhang S C 2007 Science 318 766 |
[6] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[7] | Qian X, Liu J, Fu L, and Li J 2014 Science 346 1344 |
[8] | Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803 |
[9] | Zhang H, Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438 |
[10] | Fujita M, Wakabayashi K, Nakada K, and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920 |
[11] | Son Y W, Cohen M L, and Louie S G 2006 Phys. Rev. Lett. 97 216803 |
[12] | Cao T, Zhao F, and Louie S G 2017 Phys. Rev. Lett. 119 076401 |
[13] | Gröning O, Wang S Y, Yao X L, Pignedoli C A, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X L, Narita A, Müllen K, Ruffieux P, and Fasel R 2018 Nature 560 209 |
[14] | Lee Y L, Zhao F, Cao T, Ihm J, and Louie S G 2018 Nano Lett. 18 7247 |
[15] | Lin K S and Chou M Y 2018 Nano Lett. 18 7254 |
[16] | Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F, and Fischer F R 2018 Nature 560 204 |
[17] | Joost J P, Jauho A P, and Bonitz M 2019 Nano Lett. 19 9045 |
[18] | Jiang J and Louie S G 2021 Nano Lett. 21 197 |
[19] | Liu D X, Li X F, Zhang X H, Cao X, Zhu X J, and Shi D 2020 J. Phys. Chem. C 124 15448 |
[20] | Sun Q, Yan Y Y, Yao X L, Müllen K, Narita A, Fasel R, and Ruffieux P 2021 J. Phys. Chem. Lett. 12 8679 |
[21] | Zhao F, Cao T, and Louie S G 2021 Phys. Rev. Lett. 127 166401 |
[22] | Arnold F M, Liu T J, Kuc A, and Heine T 2022 Phys. Rev. Lett. 129 216401 |
[23] | Li J, Sanz S, Merino-Díez N, Vilas-Varela M, Garcia-Lekue A, Corso M, de Oteyza D G, Frederiksen T, Peña D, and Pascual J I 2021 Nat. Commun. 12 5538 |
[24] | Li J and Chang K 2009 Appl. Phys. Lett. 95 222110 |
[25] | Miao M S, Yan Q, Van de Walle C G, Lou W K, Li L L, and Chang K 2012 Phys. Rev. Lett. 109 186803 |
[26] | Zhang D, Lou W, Miao M, Zhang S C, and Chang K 2013 Phys. Rev. Lett. 111 156402 |
[27] | Liu J and Vanderbilt D 2013 Phys. Rev. B 88 224202 |
[28] | Antonius G and Louie S G 2016 Phys. Rev. Lett. 117 246401 |
[29] | Monserrat B and Vanderbilt D 2016 Phys. Rev. Lett. 117 226801 |
[30] | Huang A, Ke S, Guan J H, Li J, and Lou W K 2024 Phys. Rev. B 109 045408 |
[31] | Zhang D B, Seifert G, and Chang K 2014 Phys. Rev. Lett. 112 096805 |
[32] | Li Y M, Zhou X, Zhang Y Y, Zhang D, and Chang K 2017 Phys. Rev. B 96 035406 |
[33] | Ke S, Li Y M, Lou W K, and Chang K 2023 Phys. Rev. B 107 104426 |
[34] | Wei B, Zhu J J, Song Y, and Chang K 2024 Phys. Rev. Res. 6 013210 |
[35] | Wu Z, Zhai F, Peeters F M, Xu H Q, and Chang K 2011 Phys. Rev. Lett. 106 176802 |
[36] | Moldovan D, Andelkovic M, and Peeters F 2020 Pybinding v0.9.5: A Python package for Tight-Binding Calculations |
[37] | Coh S and Vanderbilt D 2016 Python Tight Binding (PythTB) v1.7.2 |
[38] | Zak J 1989 Phys. Rev. Lett. 62 2747 |
[39] | Rhim J W, Behrends J, and Bardarson J H 2017 Phys. Rev. B 95 035421 |
[40] | Seshadri R and Sen D 2022 Phys. Rev. B 106 245401 |
[41] | Peierls R 1933 Z. Phys. 80 763 |
[42] | Zhu H X, Wang T T, Gao J S, Li S, Sun Y J, and Liu G L 2014 Chin. Phys. Lett. 31 030503 |
[43] | Rudner M S and Lindner N H 2020 arXiv:2003.08252 [cond-mat.mes-hall] |
[44] | Lei L X, Wang W C, Huang G Y, Hu S, Cao X, Zhang X F, Deng M T, and Chen P X 2024 Chin. Phys. Lett. 41 090301 |
[45] | Berntsen M H, Götberg O, and Tjernberg O 2011 Rev. Sci. Instrum. 82 095113 |
[46] | He Y, Vishik I M, Yi M, Yang S, Liu Z, Lee J J, Chen S, Rebec S N, Leuenberger D, Zong A, Jefferson C M, Moore R G, Kirchmann P S, Merriam A J, and Shen Z X 2016 Rev. Sci. Instrum. 87 011301 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|