Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 097301    DOI: 10.1088/0256-307X/41/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic and Thermoelectric Properties in SnS-Nanoribbon-Based Heterojunctions
Kai-Bo Zhang1, Shi-Hua Tan1, Xiao-Fang Peng1*, and Meng-Qiu Long2*
1Hunan Province Key Laboratory of Materials Surface or Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
2School of Physics and Electronics, Central South University, Changsha 410083, China
Cite this article:   
Kai-Bo Zhang, Shi-Hua Tan, Xiao-Fang Peng et al  2024 Chin. Phys. Lett. 41 097301
Download: PDF(5324KB)   PDF(mobile)(5345KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As an earth-abundant and environmentally friendly material, tin sulfide (SnS) is not only a high-performance photovoltaic material, but also a new promising thermoelectric material. Despite extensive research on the thermoelectric properties of this material in recent years, the room-temperature thermoelectric figure of merit (ZT) of SnS has not been broke through 2 [2022 Sci. China Mater. 65 1143]. In this work, based on a combination of density functional theory and non-equilibrium Green's function method, the electronic and thermoelectric properties in SnS-nanoribbon-based heterojunctions are studied. The results show that although SnS nanoribbons (SNSNRs) with zigzag edges (ZSNSNRs) and armchair edges (ASNSNRs) both have semiconductor properties, the bandgaps of ASNSNRs are much wider than those of ZSNSNRs, which induces much wider conductance gaps of $N$-ASNSNR ($N$ is the number of tin-sulfide lines across the ribbon width)). In the positive energy region, the ZT peaks of $L$-SNS-Au are much larger than those of $L$-SNS-GNR ($L$ represents the number of longitudinal repeating units of SNSNR in the scattering region). While in the positive energy region, the ZT peaks of $L$-SNS-GNR are larger than those of $L$-SNS-Au. Further calculations reveal that the figure of merit will be over 3.7 in $L$-SNS-Au and 2.2 in $L$-SNS-GNR at room temperature, and over 4 in $L$-SNS-Au and 2.6 in $L$-SNS-GNR at 500 K.
Received: 16 May 2024      Published: 13 September 2024
PACS:  73.50.Lw (Thermoelectric effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/097301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai-Bo Zhang
Shi-Hua Tan
Xiao-Fang Peng
and Meng-Qiu Long
[1] Su L, Wang D, Wang S, Qin B, Wang Y, Qin Y, Jin Y, Chang C, and Zhao L D 2022 Science 375 1385
[2] Qin Y, Qin B, Hong T et al. 2024 Science 383 1204
[3] El Chaar L, lamont L A, and El Zein N 2011 Renewable Sustain. Energy Rev. 15 2165
[4] Parida B, Iniyan S, and Goic R 2011 Renewable Sustain. Energy Rev. 15 1625
[5] Ouyang T, Jiang E, Tang C, Li J, He C, and Zhong J 2018 J. Mater. Chem. A 6 21532
[6] Xu Y, Gan Z, and Zhang S C 2014 Phys. Rev. Lett. 112 226801
[7] Ma L, Nian L L, and Lü J T 2020 Phys. Rev. B 101 045410
[8] Zhang B, Zhang S, Dong J, Sun Y, Ouyang F, and Long M 2021 J. Mater. Chem. C 9 12322
[9] Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, and Uher C 2012 Phys. Rev. Lett. 108 166601
[10] Pei Y, Shi X, LaLonde A, Wang H, Chen L, and Snyder G J 2011 Nature 473 66
[11] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, and Snyder G J 2008 Science 321 554
[12] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G 2012 Nature 489 414
[13] Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, and Uher C 2017 Adv. Mater. 29 1602013
[14] Liu W D, Shi X L, Lin Z J, Sun Q, Han G, Chen Z G, and Zou J 2020 ACS Appl. Energy Mater. 3 2192
[15] Gupta R, Kakkar S, Dongre B, Carrete J, and Bera C 2023 ACS Appl. Energy Mater. 6 3944
[16] Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M, and Chen K Q 2023 Phys. Rev. B 107 104303
[17] Xiao W H, Yang K, D'Agosta R, Xu H R, Ouyang G, Zhou G, Chen K Q, and Tang L M 2024 Phys. Rev. B 109 115427
[18] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, and Strano M S 2012 Nat. Nanotechnol. 7 699
[19] Lei H, Ouyang T, He C, Li J, and Tang C 2023 Appl. Phys. Lett. 122 062903
[20] Butler S Z, Hollen S M, Cao L et al. 2013 ACS Nano 7 2898
[21] Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B, and Kanatzidis M G 2014 J. Mater. Chem. A 2 17302
[22] Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z, and Pei Y 2017 ACS Appl. Mater. & Interfaces 9 34033
[23] Özçelik V O, Fathi M, Azadani J G, and Low T 2018 Phys. Rev. Mater. 2 051003
[24] Li Y, Wu M, Song D K, Ding T, Liu F, Li J, Zhang H, and Xie H 2020 ACS Appl. Energy Mater. 3 6946
[25] Liu P, Wu M, Abbas G, Yang W, Liu F, and Li Y 2022 Comput. Mater. Sci. 207 111271
[26] van Kan J A, Bettiol A A, and Watt F 2006 Nano Lett. 6 579
[27] Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
[28] Li Z, Qian H, Wu J, Gu B L, and Duan W 2008 Phys. Rev. Lett. 100 206802
[29] Peng X F and Chen K Q 2014 Carbon 77 360
[30] Liu Y Y, Li B L, Chen S Z, Jiang X, and Chen K Q 2017 Appl. Phys. Lett. 111 133107
[31] Pan C N, Xie Z X, Tang L M, and Chen K Q 2012 Appl. Phys. Lett. 101 103115
[32] Guo X D, Zhang X R, Zhang K B, He M D, Long M Q, Tan S H, and Peng X F 2023 Results Phys. 51 106610
[33] Dong X, Wang X J, Zhang K B, Long M Q, Tan S H, and Peng X F 2024 Comput. Mater. Sci. 236 112858
[34] Li X F, Chen K Q, Wang L L, Long M Q, Zou B S, and Shuai Z 2007 Appl. Phys. Lett. 91 133511
[35] Zeng J, Chen K Q, and Tong Y X 2018 Carbon 127 611
[36] Taylor J, Guo H, and Wang J 2001 Phys. Rev. B 63 245407
[37] Brandbyge M, Mozos J L, Ordejón P et al. 2002 Phys. Rev. B 65 165401
[38] Jiang J W, Wang J S, and Li B 2011 J. Appl. Phys. 109 014326
[39] Wang J S, Wang J, and Lü J T 2008 Eur. Phys. J. B 62 381
[40] Peng X F, Chen K Q, Wan Q, Zou B S, and Duan W 2010 Phys. Rev. B 81 195317
[41] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, and Chen K Q 2020 Sci. Chin. Phys. Mech. & Astron. 63 276811
[42] He W, Ang R, and Zhao L D 2022 Sci. Chin. Mater. 65 1143
[43] Huang L, Zhou Y, Chen Y, Ye J, Liu J, Xiao Z, Tang C, Xia H, and Hong W 2021 Sci. Chin. Chem. 64 1426
[44] Garner M H, Li H X, Chen Y et al. 2018 Nature 558 415
Related articles from Frontiers Journals
[1] Bei Cao, Chongze Han, Xiang Hao, Chen Wang, and Jincheng Lu. Impact of Quantum Coherence on Inelastic Thermoelectric Devices: From Diode to Transistor[J]. Chin. Phys. Lett., 2024, 41(7): 097301
[2] Bowen Zheng, Tao Chen, Hairui Sun, Manman Yang, Bingchao Yang, Xin Chen, Yongsheng Zhang, and Xiaobing Liu. Influence of High-Pressure Induced Lattice Dislocations and Distortions on Thermoelectric Performance of Pristine SnTe[J]. Chin. Phys. Lett., 2024, 41(5): 097301
[3] Jin-Zhu Gao, Xing Liu, Jian-Hui Wang, and Ji-Zhou He. Cooling by Coulomb Heat Drag Based on Three Coupled Quantum Dots[J]. Chin. Phys. Lett., 2023, 40(11): 097301
[4] Xiaowen Han, Yiming Lu, Ying Liu, Miaomiao Wu, Yating Li, Zixing Wang, and Kefeng Cai. CuI/Nylon Membrane Hybrid Film with Large Seebeck Effect[J]. Chin. Phys. Lett., 2021, 38(12): 097301
[5] Zhongmou Yue, Kunpeng Zhao, Hongyi Chen, Pengfei Qiu, Lidong Chen, and Xun Shi. Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions[J]. Chin. Phys. Lett., 2021, 38(11): 097301
[6] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 097301
[7] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 097301
[8] Li-Yan Zhou, Qi Zheng, Li-Hong Bao, Wen-Jie Liang. Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature[J]. Chin. Phys. Lett., 2020, 37(1): 097301
[9] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 097301
[10] Dong-Dong Yang, Hao Tong, Ling-Jun Zhou, Xiang-Shui Miao. Effects of Thickness and Temperature on Thermoelectric Properties of Bi$_{2}$Te$_{3}$-Based Thin Films[J]. Chin. Phys. Lett., 2017, 34(12): 097301
[11] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 097301
[12] ZHU Yue-Qin, ZHANG Zhong-Hua, SONG San-Nian, XIE Hua-Qing, SONG Zhi-Tang, SHEN Lan-Lan, LI Le, WU Liang-Cai, LIU Bo. Characterization of Ge Doping on Sb2Te3 for High-Speed Phase Change Memory Application[J]. Chin. Phys. Lett., 2015, 32(07): 097301
[13] XU Kun-Qi, ZENG Hua-Rong, YU Hui-Zhu, ZHAO Kun-Yu, LI Guo-Rong, SONG Jun-Qiang, SHI Xun, CHEN Li-Dong. An Alternating-Current Voltage Modulated Thermal Probe Technique for Local Seebeck Coefficient Characterization[J]. Chin. Phys. Lett., 2014, 31(12): 097301
[14] ZHANG Lian-Chang, SHI Zhi-Wen, YANG Rong, HUANG Jian. Effects of Pretreatment on the Electronic Properties of Plasma Enhanced Chemical Vapor Deposition Hetero-Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2014, 31(09): 097301
[15] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 097301
Viewed
Full text


Abstract