Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 087402    DOI: 10.1088/0256-307X/41/8/087402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Correlation and Pseudogap-Like Behavior of High-Temperature Superconductor La$_{3}$Ni$_2$O$_{7}$
Yidian Li1†, Xian Du1†, Yantao Cao2,3†, Cuiying Pei4†, Mingxin Zhang4, Wenxuan Zhao1, Kaiyi Zhai1, Runzhe Xu1, Zhongkai Liu4,5, Zhiwei Li2, Jinkui Zhao3, Gang Li4, Yanpeng Qi4,5,6*, Hanjie Guo3*, Yulin Chen4,5,7*, and Lexian Yang1,8*
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Key Lab for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
5ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China
6Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
7Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
8Frontier Science Center for Quantum Information, Beijing 100084, China
Cite this article:   
Yidian Li, Xian Du, Yantao Cao et al  2024 Chin. Phys. Lett. 41 087402
Download: PDF(4541KB)   PDF(mobile)(4676KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La$_{3}$Ni$_{2}$O$_{7}$ at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La$_{3}$Ni$_{2}$O$_{7}$ at ambient pressure. Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect. The strong electron correlation effect pushes a flat band of $d_{z^{2}}$ orbital component below the Fermi level ($E_{\rm F}$), which is predicted to locate right at $E_{\rm F}$ under high pressure. Moreover, the $d_{x^{2}-y^{2}}$ band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near $E_{\rm F}$. Our findings provide important insights into the electronic structure of La$_{3}$Ni$_{2}$O$_{7}$, which will shed light on understanding of the unconventional superconductivity in nickelates.
Received: 01 July 2024      Editors' Suggestion Published: 23 July 2024
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.45.Lr (Charge-density-wave systems)  
  79.60.-i (Photoemission and photoelectron spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/087402       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/087402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yidian Li
Xian Du
Yantao Cao
Cuiying Pei
Mingxin Zhang
Wenxuan Zhao
Kaiyi Zhai
Runzhe Xu
Zhongkai Liu
Zhiwei Li
Jinkui Zhao
Gang Li
Yanpeng Qi
Hanjie Guo
Yulin Chen
and Lexian Yang
[1] Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179
[2] Zhou X J, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, and Eremets M 2021 Nat. Rev. Phys. 3 462
[3] Si Q, Yu R, and Abrahams E 2016 Nat. Rev. Mater. 1 16017
[4] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[5] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[6] Hashimoto M, Vishik I M, He R H, Devereaux T P, and Shen Z X 2014 Nat. Phys. 10 483
[7] Dagotto E 1994 Rev. Mod. Phys. 66 763
[8] Damascelli A, Hussain Z, and Shen Z X 2003 Rev. Mod. Phys. 75 473
[9] Zhou X, Qin P, Feng Z, Yan H, Wang X, Chen H, Meng Z, and Liu Z 2022 Mater. Today 55 170
[10] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[11] Pickett W E 2021 Nat. Rev. Phys. 3 7
[12] Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[13] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083
[14] Kreisel A, Andersen B M, Rømer A T, Eremin I M, and Lechermann F 2022 Phys. Rev. Lett. 129 077002
[15] Hepting M, Li D, Jia C J et al. 2020 Nat. Mater. 19 381
[16] Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H, and Kuroki K 2020 Phys. Rev. Lett. 125 077003
[17] Zeng S W, Li C J, Chow L E et al. 2022 Sci. Adv. 8 eabl9927
[18] Wang N N, Yang M W, Yang Z et al. 2022 Nat. Commun. 13 4367
[19] Pan G A, Ferenc Segedin D, LaBollita H et al. 2022 Nat. Mater. 21 160
[20] Sun H L, Huo M W, Hu X W et al. 2023 Nature 621 493
[21] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302
[22] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, and Yuan H Q 2024 Nat. Phys. (accepted)
[23] Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, and Qi Y P 2024 J. Mater. Sci. & Technol. 185 147
[24] Luo Z H, Hu X W, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001
[25] Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510
[26] Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121
[27] Cao Y and Yang Y F 2024 Phys. Rev. B 109 L081105
[28] Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, and Si Q 2023 Phys. Rev. B 108 214522
[29] Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[30] Gu Y H, Le C C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con]
[31] Yang Y f, Zhang G M, and Zhang F C 2023 arXiv:2308.01176 [cond-mat.supr-con]
[32] Tian Y H, Chen Y, Wang J M, He R Q, and Lu Z Y 2024 Phys. Rev. B 109 165154
[33] Wu W, Luo Z H, Yao D X, and Wang M 2024Sci. Chin. Phys. Mech. & Astron. 67 117402
[34] Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501
[35] Zhang J X, Zhang H K, You Y Z, and Weng Z Y 2023 arXiv:2309.05726 [cond-mat.supr-con]
[36] Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, and Feng D L 2023 arXiv:2401.12657 [cond-mat.supr-con]
[37] Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, and Chen X H 2024 arXiv:2402.03952 [cond-mat.supr-con]
[38] Chen K W, Liu X Q, Jiao J C et al. 2024 Phys. Rev. Lett. 132 256503
[39] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con]
[40] Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2024 Nat. Commun. 15 4373
[41] Yi M, Lu D H, Yu R et al. 2013 Phys. Rev. Lett. 110 067003
[42] Ling C D, Argyriou D N, Wu G, and Neumeier J J 2000 J. Solid State Chem. 152 517
[43] Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, and Sato M 1995 J. Phys. Soc. Jpn. 64 1644
[44] Liu Z J, Sun H L, Huo M W et al. 2023 Sci. Chin. Phys. Mech. & Astron. 66 217411
[45]The results about the superconductivity at high pressure will be presented elsewhere.
[46] Shilenko D A and Leonov I V 2023 Phys. Rev. B 108 125105
[47] Wang Y X, Jiang K, Wang Z Q, Zhang F C, and Hu J P 2024 arXiv:2401.15097 [cond-mat.supr-con]
[48] Li H, Zhou X, Nummy T, Zhang J, Pardo V, Pickett W E, Mitchell J F, and Dessau D S 2017 Nat. Commun. 8 704
[49] Zhang M X, Pei C Y, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Yan S C, Yang L X, and Qi Y P 2023 arXiv:2311.07423 [cond-mat.supr-con]
[50] Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J G, and Zhao J 2024 Nature 631 531
[51] Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, and Wen H H 2024 Chin. Phys. Lett. 41 017401
[52] Zhou J S, Xu R Z, Yu X Q et al. 2023 Phys. Rev. Lett. 130 216004
[53] Xie B P, Yang K, Shen D W et al. 2007 Phys. Rev. Lett. 98 147001
[54] Khasanov R, Hicken T J, Gawryluk D J, Sorel L P, Bötzel S, Lechermann F, Eremin I M, Luetkens H, and Guguchia Z 2024 arXiv:2402.10485 [cond-mat.supr-con]
[55] Lechermann F, Bötzel S, and Eremin I M 2024 Phys. Rev. Mater. 8 074802
[56] Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, and Yang L X 2024 arXiv:2403.05012 [cond-mat.supr-con]
[57] Pei C Y, Zhang J F, Wang Q et al. 2023 Natl. Sci. Rev. 10 nwad034
[58] Pei C Y, Ying T P, Zhang Q H et al. 2022 J. Am. Chem. Soc. 144 6208
[59] Wang Q, Kong P F, Shi W J et al. 2021 Adv. Mater. 33 2102813
[60] Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res. 91 4673
[61] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[62] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[63] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685
[64] Wu Q, Zhang S, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
Related articles from Frontiers Journals
[1] Feng Ran, Pan Chen, Dingyi Li, Peiyu Xiong, Zixin Fan, Haoming Ling, Yan Liang, and Jiandi Zhang. Ultrathin Limit on the Anisotropic Superconductivity of Single-Layered Cuprate Films[J]. Chin. Phys. Lett., 2024, 41(2): 087402
[2] Xu Chen, Pei-han Sun, Zhenkai Xie, Fanqi Meng, Cuiying Pei, Yanpeng Qi, Tianping Ying, Kai Liu, Jian-gang Guo, and Xiaolong Chen. Pressure-Induced Superconductivity in the Charge-Density-Wave Compound LaTe$_{2- x}$Sb$_{x}$ ($x = 0$ and 0.4)[J]. Chin. Phys. Lett., 2023, 40(10): 087402
[3] Fang-Jun Cheng, Yi-Min Zhang, Jia-Qi Fan, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Ambipolar Doping of Monolayer FeSe by Interface Engineering[J]. Chin. Phys. Lett., 2023, 40(8): 087402
[4] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Erratum: Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$ [Chin. Phys. Lett. 40, 037102 (2023)][J]. Chin. Phys. Lett., 2023, 40(4): 087402
[5] Hongen Zhu, Tongrui Li, Fanghang Yu, Yuliang Li, Sheng Wang, Yunbo Wu, Zhanfeng Liu, Zhengming Shang, Shengtao Cui, Yi Liu, Guobin Zhang, Lidong Zhang, Zhenyu Wang, Tao Wu, Jianjun Ying, Xianhui Chen, and Zhe Sun. Electronic Instability of Kagome Metal CsV$_{3}$Sb$_{5}$ in the $2 \times 2\times 2$ Charge Density Wave State[J]. Chin. Phys. Lett., 2023, 40(4): 087402
[6] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 087402
[7] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 087402
[8] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 087402
[9] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 087402
[10] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 087402
[11] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 087402
[12] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 087402
[13] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 087402
[14] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 087402
[15] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 087402
Viewed
Full text


Abstract