CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Correlation and Pseudogap-Like Behavior of High-Temperature Superconductor La$_{3}$Ni$_2$O$_{7}$ |
Yidian Li1†, Xian Du1†, Yantao Cao2,3†, Cuiying Pei4†, Mingxin Zhang4,
Wenxuan Zhao1, Kaiyi Zhai1, Runzhe Xu1, Zhongkai Liu4,5, Zhiwei Li2, Jinkui Zhao3, Gang Li4, Yanpeng Qi4,5,6*, Hanjie Guo3*, Yulin Chen4,5,7*, and Lexian Yang1,8* |
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 2Key Lab for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 5ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China 6Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China 7Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK 8Frontier Science Center for Quantum Information, Beijing 100084, China
|
|
Cite this article: |
Yidian Li, Xian Du, Yantao Cao et al 2024 Chin. Phys. Lett. 41 087402 |
|
|
Abstract High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La$_{3}$Ni$_{2}$O$_{7}$ at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La$_{3}$Ni$_{2}$O$_{7}$ at ambient pressure. Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect. The strong electron correlation effect pushes a flat band of $d_{z^{2}}$ orbital component below the Fermi level ($E_{\rm F}$), which is predicted to locate right at $E_{\rm F}$ under high pressure. Moreover, the $d_{x^{2}-y^{2}}$ band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near $E_{\rm F}$. Our findings provide important insights into the electronic structure of La$_{3}$Ni$_{2}$O$_{7}$, which will shed light on understanding of the unconventional superconductivity in nickelates.
|
|
Received: 01 July 2024
Editors' Suggestion
Published: 23 July 2024
|
|
PACS: |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
|
|
|
[1] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[2] | Zhou X J, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, and Eremets M 2021 Nat. Rev. Phys. 3 462 |
[3] | Si Q, Yu R, and Abrahams E 2016 Nat. Rev. Mater. 1 16017 |
[4] | Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969 |
[5] | Paglione J and Greene R L 2010 Nat. Phys. 6 645 |
[6] | Hashimoto M, Vishik I M, He R H, Devereaux T P, and Shen Z X 2014 Nat. Phys. 10 483 |
[7] | Dagotto E 1994 Rev. Mod. Phys. 66 763 |
[8] | Damascelli A, Hussain Z, and Shen Z X 2003 Rev. Mod. Phys. 75 473 |
[9] | Zhou X, Qin P, Feng Z, Yan H, Wang X, Chen H, Meng Z, and Liu Z 2022 Mater. Today 55 170 |
[10] | Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 |
[11] | Pickett W E 2021 Nat. Rev. Phys. 3 7 |
[12] | Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 |
[13] | Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083 |
[14] | Kreisel A, Andersen B M, Rømer A T, Eremin I M, and Lechermann F 2022 Phys. Rev. Lett. 129 077002 |
[15] | Hepting M, Li D, Jia C J et al. 2020 Nat. Mater. 19 381 |
[16] | Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H, and Kuroki K 2020 Phys. Rev. Lett. 125 077003 |
[17] | Zeng S W, Li C J, Chow L E et al. 2022 Sci. Adv. 8 eabl9927 |
[18] | Wang N N, Yang M W, Yang Z et al. 2022 Nat. Commun. 13 4367 |
[19] | Pan G A, Ferenc Segedin D, LaBollita H et al. 2022 Nat. Mater. 21 160 |
[20] | Sun H L, Huo M W, Hu X W et al. 2023 Nature 621 493 |
[21] | Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302 |
[22] | Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, and Yuan H Q 2024 Nat. Phys. (accepted) |
[23] | Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, and Qi Y P 2024 J. Mater. Sci. & Technol. 185 147 |
[24] | Luo Z H, Hu X W, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001 |
[25] | Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510 |
[26] | Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121 |
[27] | Cao Y and Yang Y F 2024 Phys. Rev. B 109 L081105 |
[28] | Liao Z, Chen L, Duan G, Wang Y, Liu C, Yu R, and Si Q 2023 Phys. Rev. B 108 214522 |
[29] | Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 |
[30] | Gu Y H, Le C C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con] |
[31] | Yang Y f, Zhang G M, and Zhang F C 2023 arXiv:2308.01176 [cond-mat.supr-con] |
[32] | Tian Y H, Chen Y, Wang J M, He R Q, and Lu Z Y 2024 Phys. Rev. B 109 165154 |
[33] | Wu W, Luo Z H, Yao D X, and Wang M 2024Sci. Chin. Phys. Mech. & Astron. 67 117402 |
[34] | Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501 |
[35] | Zhang J X, Zhang H K, You Y Z, and Weng Z Y 2023 arXiv:2309.05726 [cond-mat.supr-con] |
[36] | Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, and Feng D L 2023 arXiv:2401.12657 [cond-mat.supr-con] |
[37] | Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, and Chen X H 2024 arXiv:2402.03952 [cond-mat.supr-con] |
[38] | Chen K W, Liu X Q, Jiao J C et al. 2024 Phys. Rev. Lett. 132 256503 |
[39] | Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con] |
[40] | Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2024 Nat. Commun. 15 4373 |
[41] | Yi M, Lu D H, Yu R et al. 2013 Phys. Rev. Lett. 110 067003 |
[42] | Ling C D, Argyriou D N, Wu G, and Neumeier J J 2000 J. Solid State Chem. 152 517 |
[43] | Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, and Sato M 1995 J. Phys. Soc. Jpn. 64 1644 |
[44] | Liu Z J, Sun H L, Huo M W et al. 2023 Sci. Chin. Phys. Mech. & Astron. 66 217411 |
[45] | The results about the superconductivity at high pressure will be presented elsewhere. |
[46] | Shilenko D A and Leonov I V 2023 Phys. Rev. B 108 125105 |
[47] | Wang Y X, Jiang K, Wang Z Q, Zhang F C, and Hu J P 2024 arXiv:2401.15097 [cond-mat.supr-con] |
[48] | Li H, Zhou X, Nummy T, Zhang J, Pardo V, Pickett W E, Mitchell J F, and Dessau D S 2017 Nat. Commun. 8 704 |
[49] | Zhang M X, Pei C Y, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Yan S C, Yang L X, and Qi Y P 2023 arXiv:2311.07423 [cond-mat.supr-con] |
[50] | Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J G, and Zhao J 2024 Nature 631 531 |
[51] | Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, and Wen H H 2024 Chin. Phys. Lett. 41 017401 |
[52] | Zhou J S, Xu R Z, Yu X Q et al. 2023 Phys. Rev. Lett. 130 216004 |
[53] | Xie B P, Yang K, Shen D W et al. 2007 Phys. Rev. Lett. 98 147001 |
[54] | Khasanov R, Hicken T J, Gawryluk D J, Sorel L P, Bötzel S, Lechermann F, Eremin I M, Luetkens H, and Guguchia Z 2024 arXiv:2402.10485 [cond-mat.supr-con] |
[55] | Lechermann F, Bötzel S, and Eremin I M 2024 Phys. Rev. Mater. 8 074802 |
[56] | Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, and Yang L X 2024 arXiv:2403.05012 [cond-mat.supr-con] |
[57] | Pei C Y, Zhang J F, Wang Q et al. 2023 Natl. Sci. Rev. 10 nwad034 |
[58] | Pei C Y, Ying T P, Zhang Q H et al. 2022 J. Am. Chem. Soc. 144 6208 |
[59] | Wang Q, Kong P F, Shi W J et al. 2021 Adv. Mater. 33 2102813 |
[60] | Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res. 91 4673 |
[61] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[62] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[63] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[64] | Wu Q, Zhang S, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|