Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 087701    DOI: 10.1088/0256-307X/41/8/087701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Structural and Ferroelectric Transition in Few-Layer HfO$_{2}$ Films by First Principles Calculations
Ruiling Gao1, Chao Liu2,1, Bowen Shi3,1, Yongchang Li1, Bing Luo1, Rui Chen1, Wenbin Ouyang1, Heng Gao1, Shunbo Hu1,4*, Yin Wang1,5, Dongdong Li6*, and Wei Ren1*
1Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, International Center of Quantum and Molecular Structures, Physics Department, Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
2Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
3Shanghai World Foreign Language Academy, Shanghai 200233, China
4Key Laboratory of Silicate Cultural Relics Conservation (Ministry of Education), Shanghai University, Shanghai 200444, China
5Hongzhiwei Technology (Shanghai) Co., Ltd., Shanghai 201206, China
6Zhangjiang Laboratory, Shanghai 201210, China
Cite this article:   
Ruiling Gao, Chao Liu, Bowen Shi et al  2024 Chin. Phys. Lett. 41 087701
Download: PDF(4139KB)   PDF(mobile)(4176KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The discovery of ferroelectricity in HfO$_{2}$-based materials with high dielectric constant has inspired tremendous research interest for next-generation electronic devices. Importantly, films structure and strain are key factors in exploration of ferroelectricity in fluorite-type oxide HfO$_{2}$ films. Here we investigate the structures and strain-induced ferroelectric transition in different phases of few-layer HfO$_{2}$ films (layer number $N=1$–5). It is found that HfO$_{2}$ films for all phases are more stable with increasing films thickness. Among them, the $Pmn2_{1}$ (110)-oriented film is most stable, and the films of $N=4$, 5 occur with a $P2_{1}$ ferroelectric transition under tensile strain, resulting in polarization about 11.8 µC/cm$^{2}$ along in-plane $a$-axis. The ferroelectric transition is caused by the strain, which induces the displacement of Hf and O atoms on the surface to non-centrosymmetric positions away from the original paraelectric positions, accompanied by the change of surface Hf–O bond lengths. More importantly, three new stable HfO$_{2}$ 2D structures are discovered, together with analyses of computed electronic structures, mechanical, and dielectric properties. This work provides guidance for theoretical and experimental study of the new structures and strain-tuned ferroelectricity in freestanding HfO$_{2}$ films.
Received: 02 April 2024      Published: 21 August 2024
PACS:  77.55.fp (Other ferroelectric films)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/087701       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/087701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruiling Gao
Chao Liu
Bowen Shi
Yongchang Li
Bing Luo
Rui Chen
Wenbin Ouyang
Heng Gao
Shunbo Hu
Yin Wang
Dongdong Li
and Wei Ren
[1] Park M H, Lee Y H, Mikolajick T, Schroeder U, and Hwang C S 2018 MRS Commun. 8 795
[2] Fan Z, Chen J, and Wang J 2016 J. Adv. Dielectr. 6 1630003
[3] Böscke T S, Müller J, Bräuhaus D, Schröder U, and Böttger U 2011 Appl. Phys. Lett. 99 102903
[4] Lee K, Lee T Y, Yang S M, Lee D H, Park J, and Chae S C 2018 Appl. Phys. Lett. 112 202901
[5] Mueller S, Mueller J, Singh A et al. 2012 Adv. Funct. Mater. 22 2412
[6] Vulpe S, Nastase F, Dragoman M et al. 2019 Appl. Surf. Sci. 483 324
[7] Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T, and Seong Hwang C 2013 Appl. Phys. Lett. 102 242905
[8] Lee Y, Kim S H, Jeong H W et al. 2024 Appl. Surf. Sci. 648 158948
[9] Mueller S, Adelmann C, Singh A, Van Elshocht S, Schroeder U, and Mikolajick T 2012 ECS J. Solid State Sci. Technol. 1 N123
[10] Hoffmann M, Schroeder U, Schenk T et al. 2015 J. Appl. Phys. 118 072006
[11] Schroeder U, Richter C, Park M H et al. 2018 Inorg. Chem. 57 2752
[12] Tromm T C U, Zhang J, Schubert J et al. 2017 Appl. Phys. Lett. 111 142904
[13] Wu J, Zhang Y, Zhang L, and Liu S 2021 Phys. Rev. B 103 024108
[14] Li T, Ye M, Sun Z Z et al. 2019 ACS Appl. Mater. & Interfaces 11 4139
[15] Qi Y B, Singh S, Lau C et al. 2020 Phys. Rev. Lett. 125 257603
[16] Wei Y F, Nukala P, Salverda M et al. 2018 Nat. Mater. 17 1095
[17] Zhang Y, Yang Q, Tao L, Tsymbal E Y, and Alexandrov V 2020 Phys. Rev. Appl. 14 014068
[18] Barabash S V 2017 J. Comput. Electron. 16 1227
[19] Park M H, Chung C C, Schenk T et al. 2018 Adv. Electron. Mater. 4 1700489
[20] Fan S T, Chen Y W, and Liu C W 2020 J. Phys. D 53 23LT01
[21] Batra R, Huan T D, Jones J L, Rossetti Jr G, and Ramprasad R 2017 J. Phys. Chem. C 121 4139
[22] Huan T D, Sharma V, Rossetti Jr G A, and Ramprasad R 2014 Phys. Rev. B 90 064111
[23] Sang X, Grimley E D, Schenk T, Schroeder U, and LeBeau J M 2015 Appl. Phys. Lett. 106 162905
[24] Schenk T, Fancher C M, Park M H et al. 2019 Adv. Electron. Mater. 5 1900303
[25] Wang Y and Ren J 2020 Phys. Chem. Chem. Phys. 22 4481
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Chevary J A, Vosko S H et al. 1993 Phys. Rev. B 48 4978
[29] Alfè D 2009 Comput. Phys. Commun. 180 2622
[30] Spaldin N A 2012 J. Solid State Chem. 195 2
[31] Herath U, Tavadze P, He X et al. 2020 Comput. Phys. Commun. 251 107080
[32] Mukhopadhyay A B, Sanz J F, and Musgrave C B 2006 Phys. Rev. B 73 115330
[33] Wang Z and Zhou G 2020 J. Phys. Chem. C 124 167
[34] Zólyomi V, Drummond N D, and Fal'ko V I 2014 Phys. Rev. B 89 205416
[35] Demkov A A 2001 Phys. Status Solidi 226 57
[36] Sayan S, Emge T, Garfunkel E et al. 2004 J. Appl. Phys. 96 7485
[37] Rinaldi C, Varotto S, Asa M et al. 2018 Nano Lett. 18 2751
[38] Picozzi S 2014 Front. Phys. 2 10
[39] Di Sante D, Barone P, Bertacco R, and Picozzi S 2013 Adv. Mater. 25 509
[40] Weng J and Gao S P 2018 Phys. Chem. Chem. Phys. 20 26453
[41] Laturia A, Van de Put M L, and Vandenberghe W G 2018 npj 2D Mater. Appl. 2 6
[42] Gao Z, Dong X, Li N, and Ren J 2017 Nano Lett. 17 772
[43] Ding Y and Wang Y 2013 J. Phys. Chem. C 117 18266
Related articles from Frontiers Journals
[1] HOU Yan-Yan, HE Ju, XU Ting-Ting, XIAO Shu-Yu, LU Xue-Liang , HUANG Feng-Zhen, LU Xiao-Mei, ZHU Jin-Song. Electric-Field Tunability of Dielectric in Polycrystalline Sr1?xMnxTiO3 Thin Films[J]. Chin. Phys. Lett., 2015, 32(11): 087701
[2] ZHOU Yin-E, TAN Xin-Yu, YU Ben-Fang, LIU Li, YUAN Song-Liu, JIAO Wei-Hong. Effects of Thickness and Polarization Field on the Photovoltaic Properties of BiFeO3 Thin Films[J]. Chin. Phys. Lett., 2014, 31(03): 087701
Viewed
Full text


Abstract