[1] | Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 | Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator
[2] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[3] | Guo H M and Franz M 2009 Phys. Rev. B 80 113102 | Topological insulator on the kagome lattice
[4] | Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802 | High-Temperature Fractional Quantum Hall States
[5] | Yu S L and Li J X 1952 Phys. Rev. B 85 144402 | Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice
[6] | Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405 | Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model
[7] | Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 1952 Phys. Rev. B 87 115135 | Competing electronic orders on kagome lattices at van Hove filling
[8] | Ye L D, Kang M G, Liu J W et al. 2018 Nature 555 638 | Massive Dirac fermions in a ferromagnetic kagome metal
[9] | Li M, Wang Q, Wang G et al. 2021 Nat. Commun. 12 3129 | Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6
[10] | Kang M G, Ye L D, Fang S et al. 2020 Nat. Mater. 19 163 | Dirac fermions and flat bands in the ideal kagome metal FeSn
[11] | Kang M G, Fang S, Ye L D et al. 2020 Nat. Commun. 11 4004 | Topological flat bands in frustrated kagome lattice CoSn
[12] | Yin J X, Ma W L, Cochran T A et al. 2020 Nature 583 533 | Quantum-limit Chern topological magnetism in TbMn6Sn6
[13] | Liu E K, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125 | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
[14] | Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212 | Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
[15] | Ortiz B R, Teicher S M L, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[16] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 | Superconductivity in the kagome metal
[17] | Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403 | Superconductivity and Normal-State Properties of Kagome Metal RbV3 Sb5 Single Crystals
[18] | Yang S Y, Wang Y J, Ortiz B R et al. 2020 Sci. Adv. 6 eabb6003 | Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3 Sb5
[19] | Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 Phys. Rev. B 104 L041103 | Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal
[20] | Chen H, Yang H, Hu B et al. 2021 Nature 599 222 | Roton pair density wave in a strong-coupling kagome superconductor
[21] | Jiang Y X, Yin J X, Denner M M et al. 2021 Nat. Mater. 20 1353 | Unconventional chiral charge order in kagome superconductor KV3Sb5
[22] | Nie L P, Sun K L, Ma W R et al. 2022 Nature 604 59 | Charge-density-wave-driven electronic nematicity in a kagome superconductor
[23] | Xiang Y, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y, and Wen H H 2021 Nat. Commun. 12 6727 | Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field
[24] | Xu Y S, Ni Z L, Liu Y Z, Ortiz B R, Deng Q W, Wilson S D, Yan B H, Balents L, and Wu L 2022 Nat. Phys. 18 1470 | Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors
[25] | Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con] | Evidence of a hidden flux phase in the topological kagome metal CsV$_3$Sb$_5$
[26] | Mielke C, Das D, Yin J X et al. 2022 Nature 602 245 | Time-reversal symmetry-breaking charge order in a kagome superconductor
[27] | Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384 | Chiral flux phase in the Kagome superconductor AV3Sb5
[28] | Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K, and Liu M 2022 Chin. Phys. Lett. 39 047402 | Screening Promising CsV3 Sb5 -Like Kagome Materials from Systematic First-Principles Evaluation
[29] | Yang H, Zhao Z, Yi X W et al. 2022 arXiv:2209.03840 [cond-mat.supr-con] | Titanium-based kagome superconductor CsTi_3Bi_5 and topological states
[30] | Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R, and Johrendt D 2022 Z. Naturforsch. B 77 757 | The kagomé metals RbTi3 Bi5 and CsTi3 Bi5
[31] | Li Y F, Wang E Y, Zhu X Y, and Wen H H 2017 Phys. Rev. B 95 024510 | Pressure-induced superconductivity in Bi single crystals
[32] | Cai Y, Wang Y, Hao Z et al. 2021 arXiv:2109.12778 [cond-mat.supr-con] | Emergence of Quantum Confinement in Topological Kagome Superconductor CsV$_3$Sb$_5$ family
[33] | Hu Y, Teicher S M L, Ortiz B R et al. 2022 Sci. Bull. 67 495 | Topological surface states and flat bands in the kagome superconductor CsV3Sb5
[34] | Yang J, Xie Y, Zhao Z et al. 2022 arXiv:2212.04447 [cond-mat.supr-con] | Observation of Flat Band, Dirac Nodal Lines and Topological Surface States in Kagome Superconductor CsTi$_3$Bi$_5$
[35] | Liu B, Kuang M, Luo Y et al. 2022 arXiv:2212.04460 [cond-mat.str-el] | Tunable van Hove singularity without structural instability in Kagome metal CsTi$_3$Bi$_5$
[36] | Jiang Z, Liu Z, Ma H et al. 2022 arXiv:2212.02399 [cond-mat.str-el] | Flat bands, non-trivial band topology and electronic nematicity in layered kagome-lattice RbTi$_3$Bi$_5$
[37] | Hu Y, Le C, Zhao Z et al. 2022 arXiv:2212.07958 [cond-mat.supr-con] | Non-trivial band topology and orbital-selective electronic nematicity in a new titanium-based kagome superconductor