Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 084201    DOI: 10.1088/0256-307X/41/8/084201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Rydberg-Atom Terahertz Heterodyne Receiver with Ultrahigh Spectral Resolution
Zhenyue She1,2,3,4†, Xiaojie Zhu5,6†, Yayi Lin1,2,3,4†, Xianzhe Li1,2,3,4, Xiaolin Yang1,2,3,4, Yanfei Shang1,2,3,4, Yuqin Teng1,2,3,4, Haitao Tu1,2,3,4, Kaiyu Liao1,2,3,4, Caixia Zhang1,2,3,4, Xiaohong Liu1,2,3,4*, Jiehua Chen5,7,8*, and Wei Huang1,2,3,4*
1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), School of Physics, South China Normal University, Guangzhou 510006, China
2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
3Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
4GPETR Center for Quantum Precision Measurement, South China Normal University, Guangzhou 510006, China
5State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
6University of Chinese Academy of Sciences, Beijing 100049, China
7Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
8Wuhan Institute of Quantum Technology, Wuhan 430206, China
Cite this article:   
Zhenyue She, Xiaojie Zhu, Yayi Lin et al  2024 Chin. Phys. Lett. 41 084201
Download: PDF(2147KB)   PDF(mobile)(2176KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Terahertz heterodyne receivers with high sensitivity and spectral resolution are crucial for various applications. Here, we present a room-temperature atomic terahertz heterodyne receiver that achieves ultrahigh sensitivity and frequency resolution. At a signal frequency of 338.7 GHz, we obtain a sensitivity of $2.88\pm0.09$ µV$\cdot$cm$^{-1}\cdot$Hz$^{-1/2}$ for electric field measurements. The calibrated linear dynamical range spans approximately 89 dB, ranging from $-110$ dBV/cm to $-21$ dBV/cm. We demodulate a 400 symbol stream encoded in 4-state phase-shift keying, demonstrating excellent phase detection capability. By scanning the frequency of the local oscillator, we realize a terahertz spectrometer with Hz level frequency resolution. This resolution is more than two orders of magnitude higher than that of existing terahertz spectrometers. The demonstrated terahertz heterodyne receiver holds promising potential for working across the entire terahertz spectrum, significantly advancing its practical applications.
Received: 09 April 2024      Published: 16 August 2024
PACS:  42.50.-p (Quantum optics)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/084201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/084201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenyue She
Xiaojie Zhu
Yayi Lin
Xianzhe Li
Xiaolin Yang
Yanfei Shang
Yuqin Teng
Haitao Tu
Kaiyu Liao
Caixia Zhang
Xiaohong Liu
Jiehua Chen
and Wei Huang
[1] Hübers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378
[2] Lin Y J and Jarrahi M 2020 Rep. Prog. Phys. 83 066101
[3] Glaab D, Boppel S, Lisauskas A, Pfeiffer U, Öjefors E, and Roskos H G 2010 Appl. Phys. Lett. 96 042106
[4] Feng W, Zhu Y F, Ding Q F, Zhu K Q, Sun J D, Zhang J F, Li X X, Shangguan Y, Jin L, and Qin H 2022 Appl. Phys. Lett. 120 051103
[5] Neugebauer G, Beichman C A, Soifer B T, Aumann H H, Chester T J, Gautier T N, Gillett F C, Hauser M G, Houck J R, Lonsdale C J, Low F J, and Young E T 1984 Science 224 14
[6] Phillips T G and Keene J 1992 Proc. IEEE 80 1662
[7] Solomon S, Rosenlof K H, Portmann R W, Daniel J S, Davis S M, Sanford T J, and Plattner G K 2010 Science 327 1219
[8] Kloosterman J L, Hayton D J, Ren Y, Kao T Y, Hovenier J N, Gao J R, Klapwijk T M, Hu Q, Walker C K, and Reno J L 2013 Appl. Phys. Lett. 102 011123
[9] Richter H, Buchbender C, Güsten R, Higgins R, Klein B, Stutzki J, Wiesemeyer H, and Hübers H W 2021 Commun. Earth Environ. 2 19
[10] Lin Y J, Cakmakyapan S, Wang N, Lee D, Spearrin M, and Jarrahi M 2019 Opt. Express 27 36838
[11] Koenig S, Lopez-Diaz D, Antes J et al. 2013 Nat. Photonics 7 977
[12] Nagatsuma T, Ducournau G, and Renaud C C 2016 Nat. Photonics 10 371
[13] Ding Q F, Zhu Y F, Xiang L Y, Zhang J F, Li X X, Jin L, Shangguan Y, Sun J D, and Qin H 2023 Appl. Phys. Express 16 024002
[14] Siegel P H and Dengler R J 2006 Int. J. Infrared Millimeter Waves 27 465
[15] Siegel P H and Dengler R J 2006 Int. J. Infrared Millimeter Waves 27 631
[16] He Y, Liu G, Zhou J, Huang K, Jiang J, and Su W 2022 Microwave Opt. Technol. Lett. 64 1048
[17] Lloyd-Hughes J and Jeon T I 2012 J. Infrared Millimeter Terahertz Waves 33 871
[18] Park B C, Kim T H, Sim K I, Kang B, Kim J W, Cho B, Jeong K H, Cho M H, and Kim J H 2015 Nat. Commun. 6 6552
[19] Sherman D, Pracht U S, Gorshunov B, Poran S, Jesudasan J, Chand M, Raychaudhuri P, Swanson M, Trivedi N, Auerbach A, Scheffler M, Frydman A, and Dressel M 2015 Nat. Phys. 11 188
[20] Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, and Reno J L 2010 Appl. Phys. Lett. 97 161105
[21] Crowe T W 1989 Int. J. Infrared Millimeter Waves 10 765
[22] Uzawa Y, Wang Z, and Kawakami A 1998 Appl. Phys. Lett. 73 680
[23] Jackson B D, Baryshev A M, de Lange G, Gao J R, Shitov S V, Iosad N N, and Klapwijk T M 2001 Appl. Phys. Lett. 79 436
[24] Hu Z, Zhang L B, Chakraborty A, D'Olimpio G, Fujii J, Ge A P, Zhou Y C, Liu C L, Agarwal A, Vobornik I, Farias D, Kuo C N, Lue C S, Politano A, Wang S W, Hu W D, Chen X S, Lu W, and Wang L 2023 Adv. Mater. 35 2370071
[25] Wang L, Han L, Guo W L, Zhang L B, Yao C Y, Chen Z, Chen Y L, Guo C, Zhang K X, Kuo C N, Lue C S, Politano A, Xing H Z, Jiang M J, Yu X B, Chen X S, and Lu W 2022 Light: Sci. & Appl. 11 53
[26] Wang N, Cakmakyapan S, Lin Y J, Javadi H, and Jarrahi M 2019 Nat. Astron. 3 977
[27] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, and Shaffer J P 2012 Nat. Phys. 8 819
[28] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, and Zhu S L 2020 Phys. Rev. A 101 053432
[29] Huang W, Liang Z T, Du Y X, Yan H, and Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese)
[30] Meyer D H, O'Brien C, Fahey D P, Cox K C, and Kunz P D 2021 Phys. Rev. A 104 043103
[31] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F, and Zhong Z P 2023 Phys. Rev. A 107 043102
[32] Tan C Z, Hu F C, Niu Z J, Jiang Y H, Weidemüller M, and Zhu B 2022 Chin. Phys. Lett. 39 093202
[33] Wang H, Jiao Y, Zhao J, Xiao L, and Jia S 2022 Chin. Phys. Lett. 39 013401
[34] Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, and Jia S 2020 Nat. Phys. 16 911
[35] Wu F, An Q, Sun Z, and Fu Y 2023 Phys. Rev. A 107 043108
[36] Meyer D H, Castillo Z A, Cox K C, and Kunz P D 2020 J. Phys. B 53 034001
[37] Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, and Zhu S L 2021 Acta Phys. Sin. 70 060702 (in Chinese)
[38] Chen S, Reed D J, MacKellar A R, Downes L A, Almuhawish N F A, Jamieson M J, Adams C S, and Weatherill K J 2022 Optica 9 485
[39] Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhang X D, Chen J H, Huang W, Yan H, and Zhu S L 2023 Fund. Res. (in press)
[40] Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, and Weatherill K J 2017 Nat. Photonics 11 40
[41] Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S, and Weatherill K J 2020 Phys. Rev. X 10 011027
[42] Simons M T, Haddab A H, Gordon J A, and Holloway C L 2019 Appl. Phys. Lett. 114 114101
[43] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W, Yan H, and Zhu S L 2022 Phys. Rev. Appl. 18 054003
[44] Preuschoff T, Schlosser M, and Birkl G 2018 Opt. Express 26 24010
[45] Jia F, Zhang J, Zhang L, Wang F, Mei J, Yu Y, Zhong Z, and Xie F 2020 Appl. Opt. 59 2108
[46] Meyer D H, Kunz P D, and Cox K C 2021 Phys. Rev. Appl. 15 014053
[47] Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, and Qu J 2019 Opt. Express 27 8848
[48] Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alù A, and Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001
[49] Wu B, Lin Y, Wu F C, Chen X Z, An Q, Liu Y, and Fu Y Q 2023 Acta Phys. Sin. 72 034204 (in Chinese)
[50] Knarr S H, Bucklew V G, Langston J, Cox K C, Hill J C, Meyer D H, and Drakes J A 2023 arXiv:2302.07316 [quant-ph]
Related articles from Frontiers Journals
[1] Shuang-Yin Huang, Jing Gao, Zhi-Cheng Ren, Zi-Mo Cheng, Wen-Zheng Zhu, Shu-Tian Xue, Yan-Chao Lou, Zhi-Feng Liu, Chao Chen, Fei Zhu, Li-Ping Yang, Xi-Lin Wang, and Hui-Tian Wang. Manipulating the Spatial Structure of Second-Order Quantum Coherence Using Entangled Photons[J]. Chin. Phys. Lett., 2024, 41(7): 084201
[2] Xin Su, Biao-Bing Jin, Jiang-Shan Tang, and Keyu Xia. Nonreciprocal Photon Blockade Based on Zeeman Splittings Induced by a Fictitious Magnetic Field[J]. Chin. Phys. Lett., 2024, 41(7): 084201
[3] Waner Hou, Hao Tang, Qin Xu, and Yiheng Lin. Experimental Proposal on Non-Hermitian Skin Effect by Two-dimensional Quantum Walk with a Single Trapped Ion[J]. Chin. Phys. Lett., 2024, 41(4): 084201
[4] Kai-Wei Huang, Xin Wang, Qing-Yang Qiu, Long Wu, and Hao Xiong. Nonreciprocal Phonon Laser in an Asymmetric Cavity with an Atomic Ensemble[J]. Chin. Phys. Lett., 2023, 40(10): 084201
[5] Lei Xu, Ling-Xiao Wang, Guang-Jie Chen, Liang Chen, Yuan-Hao Yang, Xin-Biao Xu, Aiping Liu, Chuan-Feng Li, Guang-Can Guo, Chang-Ling Zou, and Guo-Yong Xiang. Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt[J]. Chin. Phys. Lett., 2023, 40(9): 084201
[6] Jian-Yin Huang, Peng-Jun Liang, Liang Zheng, Pei-Yun Li, You-Zhi Ma, Duan-Chen Liu, Jing-Hui Xie, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo. Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$[J]. Chin. Phys. Lett., 2023, 40(7): 084201
[7] Ze-Huan Chen, Fei-Yu Wang, Hua Chen, Jin-Cheng Lu, and Chen Wang. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System[J]. Chin. Phys. Lett., 2023, 40(5): 084201
[8] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 084201
[9] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 084201
[10] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 084201
[11] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 084201
[12] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 084201
[13] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 084201
[14] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 084201
[15] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 084201
Viewed
Full text


Abstract