Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 084202    DOI: 10.1088/0256-307X/41/8/084202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Robust Transfer of Optical Frequency over 500 km Fiber Link with Instability of $10^{-21}$
Qian Zhou1,2,3,4, Xiang Zhang1,3*, Qi Zang1,3, Mengfan Wu1,3, Dan Wang1,2,3, Jie Liu1,3, Ruifang Dong1,2,3*, Tao Liu1,2,3,4*, and Shougang Zhang1,2,3
1National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China
4Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Qian Zhou, Xiang Zhang, Qi Zang et al  2024 Chin. Phys. Lett. 41 084202
Download: PDF(1556KB)   PDF(mobile)(1582KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Our primary objective is to mitigate the adverse effects of temperature fluctuations on the optical frequency transmission system by reducing the length of the interferometer. Following optimization, the phase-temperature coefficient of the optical system is reduced to approximately 1.35 fs/K. By applying a sophisticated temperature control to the remained “out-of-loop” optics fiber, the noise floor of the system has been effectively lowered to $10^{-21}$ level. Based on this performance-enhanced transfer system, we demonstrate coherent transmission of optical frequency through 500-km spooled fiber link. After being actively compensated, the transfer instability of $4.5\times 10^{-16}$ at the averaging time of 1 s and $5.6\times 10^{-21}$ at 10000 s is demonstrated. The frequency uncertainty of received light at remote site relative to that of the origin light at local site is achieved to be $1.15\times 10^{-19}$. This enhanced system configuration is particularly well suited for future long-distance frequency transmission and comparison of the most advanced optical clock signals.
Received: 15 April 2024      Editors' Suggestion Published: 27 August 2024
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  06.30.Ft (Time and frequency)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/084202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/084202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qian Zhou
Xiang Zhang
Qi Zang
Mengfan Wu
Dan Wang
Jie Liu
Ruifang Dong
Tao Liu
and Shougang Zhang
[1] Chou C W, Hume D B, Koelemeij J C J, Wineland D J, and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[2] Huntemann N, Sanner C, Lipphardt B, Tamm C, and Peik E 2016 Phys. Rev. Lett. 116 063001
[3] Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Herbers S, Häfner S, Sterr U, and Lisdat C 2018 Phys. Rev. A 98 053443
[4] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, and Ludlow A D 2013 Science 341 1215
[5] Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, and Amagai J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2625
[6] Tseng W H, Lin S Y, Feng K M, Fujieda M, and Maeno H 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 161
[7] Delva P, Lodewyck J, Bilicki S, Bookjans E, Vallet G, Le Targat R, Pottie P E, Guerlin C, Meynadier F, Le Poncin-Lafitte C, Lopez O, Amy-Klein A, Lee W K, Quintin N, Lisdat C, Al-Masoudi A, Dörscher S, Grebing C, Grosche G, Kuhl A, Raupach S, Sterr U, Hill I R, Hobson R, Bowden W, Kronjäger J, Marra G, Rolland A, Baynes F N, Margolis H S, and Gill P 2017 Phys. Rev. Lett. 118 221102
[8] Foreman S M, Holman K W, Hudson D D, Jones D J, and Ye J 2007 Rev. Sci. Instrum. 78 021101
[9] Cantin E, Tønnes M, Le Targat R, Amy-Klein A, Lopez O, and Pottie P E 2021 New J. Phys. 23 053027
[10] Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, and Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[11] Hu L, Tian X, Wang L, Wu G, and Chen J 2020 J. Lightwave Technol. 38 5916
[12] Zhang X, Deng X, Zang Q, Jiao D, Gao J, Wang D, Zhou Q, Liu J, Xu G, Dong R, Liu T, and Zhang S 2022 Chin. Phys. Lett. 39 044201
[13] Koke S, Kuhl A, Waterholter T, Raupach S M F, Lopez O, Cantin E, Quintin N, Amy-Klein A, Pottie P E, and Grosche G 2019 New J. Phys. 21 123017
[14] Schioppo M, Kronjäger J, Silva A et al. 2022 Nat. Commun. 13 212
[15] He Y B, Baldwin K G H, Orr B J et al. 2018 Optica 5 138
[16] Clivati C, Ambrosini R, Artz T et al. 2017 Sci. Rep. 7 40992
[17] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043
[18] Roberts B M, Delva P, Al-Masoudi A, Amy-Klein A et al. 2020 New J. Phys. 22 093010
[19] Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, and Huntemann N 2023 Phys. Rev. Lett. 130 253001
[20] Wcisło P, Ablewski P, Beloy K et al. 2018 Sci. Adv. 4 eaau4869
[21] Ma L S, Jungner P, Ye J, and Hall J L 1994 Opt. Lett. 19 1777
[22] Hu L, Tian X, Wu G, and Chen J 2020 Opt. Lett. 45 4308
[23] Zhang X, Hu L, Deng X, Zang Q, Jiao D, Gao J, Wang D, Zhou Q, Liu J, Xu G, Liu T, Dong R, and Zhang S 2023 Opt. Laser Technol. 157 108738
[24] Bercy A, Stefani F, Lopez O et al. 2014 Phys. Rev. A 90 061802
[25] Calosso C E, Bertacco E, Calonico D, Clivati C, Costanzo G A, Frittelli M, Levi F, Mura A, and Godone A 2013 Opt. Lett. 39 1177
[26] Coddington I, Swann W C, Lorini L et al. 2007 Nat. Photonics 1 283
[27] Williams P A, Swann W C, and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[28] Jürss T, Grosche G, and Koke S 2023 Photonics Res. 11 1113
[29] Akatsuka T, Goh T, Imai H et al. 2020 Opt. Express 28 9186
[30] Jiao D, Gao J, Deng X, Xu G, Liu J, Liu T, Dong R, and Zhang S 2020 Opt. Commun. 463 125460
[31] Grosche G 2014 Opt. Lett. 39 2545
[32] Newbury N R, Williams P A, and Swann W C 2007 Opt. Lett. 32 3056
[33] Dawkins S T, McFerran J J, and Luiten A N 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 918
[34] Raupach S M F, Koczwara A, and Grosche G 2015 Phys. Rev. A 92 021801
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 084202
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 084202
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 084202
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 084202
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 084202
[6] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 084202
[7] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 084202
[8] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 084202
[9] YAN Lu-Lu, ZHANG Yan-Yan, ZHANG Long, FAN Song-Tao, ZHANG Xiao-Fei, GUO Wen-Ge, ZHANG Shou-Gang, JIANG Hai-Feng. Attosecond-Resolution Er:Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2015, 32(10): 084202
[10] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 084202
[11] LI Ye, LIN Yi-Ge, WANG Qiang, WANG Shao-Kai, ZHAO Yang, MENG Fei, LIN Bai-Ke, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chin. Phys. Lett., 2014, 31(2): 084202
[12] TAN Yi-Dong, ZHANG Song, REN Zhou, ZHANG Yong-Qin, ZHANG Shu-Lian. Real-Time Liquid Evaporation Rate Measurement Based on a Microchip Laser Feedback Interferometer[J]. Chin. Phys. Lett., 2013, 30(12): 084202
[13] HOU Lei, HAN Hai-Nian, ZHANG Jin-Wei, LI De-Hua, WEI Zhi-Yi. A Wide Spaced Femtosecond Ti:Sapphire Frequency Comb at 15 GHz by a Fabry–Pérot Filter Cavity[J]. Chin. Phys. Lett., 2013, 30(10): 084202
[14] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 084202
[15] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 084202
Viewed
Full text


Abstract