FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Rydberg-Atom Terahertz Heterodyne Receiver with Ultrahigh Spectral Resolution |
Zhenyue She1,2,3,4†, Xiaojie Zhu5,6†, Yayi Lin1,2,3,4†, Xianzhe Li1,2,3,4, Xiaolin Yang1,2,3,4, Yanfei Shang1,2,3,4, Yuqin Teng1,2,3,4, Haitao Tu1,2,3,4, Kaiyu Liao1,2,3,4, Caixia Zhang1,2,3,4, Xiaohong Liu1,2,3,4*, Jiehua Chen5,7,8*, and Wei Huang1,2,3,4* |
1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), School of Physics, South China Normal University, Guangzhou 510006, China 2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China 3Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China 4GPETR Center for Quantum Precision Measurement, South China Normal University, Guangzhou 510006, China 5State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 6University of Chinese Academy of Sciences, Beijing 100049, China 7Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 8Wuhan Institute of Quantum Technology, Wuhan 430206, China
|
|
Cite this article: |
Zhenyue She, Xiaojie Zhu, Yayi Lin et al 2024 Chin. Phys. Lett. 41 084201 |
|
|
Abstract Terahertz heterodyne receivers with high sensitivity and spectral resolution are crucial for various applications. Here, we present a room-temperature atomic terahertz heterodyne receiver that achieves ultrahigh sensitivity and frequency resolution. At a signal frequency of 338.7 GHz, we obtain a sensitivity of $2.88\pm0.09$ µV$\cdot$cm$^{-1}\cdot$Hz$^{-1/2}$ for electric field measurements. The calibrated linear dynamical range spans approximately 89 dB, ranging from $-110$ dBV/cm to $-21$ dBV/cm. We demodulate a 400 symbol stream encoded in 4-state phase-shift keying, demonstrating excellent phase detection capability. By scanning the frequency of the local oscillator, we realize a terahertz spectrometer with Hz level frequency resolution. This resolution is more than two orders of magnitude higher than that of existing terahertz spectrometers. The demonstrated terahertz heterodyne receiver holds promising potential for working across the entire terahertz spectrum, significantly advancing its practical applications.
|
|
Received: 09 April 2024
Published: 16 August 2024
|
|
PACS: |
42.50.-p
|
(Quantum optics)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
84.40.-x
|
(Radiowave and microwave (including millimeter wave) technology)
|
|
|
|
|
[1] | Hübers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378 |
[2] | Lin Y J and Jarrahi M 2020 Rep. Prog. Phys. 83 066101 |
[3] | Glaab D, Boppel S, Lisauskas A, Pfeiffer U, Öjefors E, and Roskos H G 2010 Appl. Phys. Lett. 96 042106 |
[4] | Feng W, Zhu Y F, Ding Q F, Zhu K Q, Sun J D, Zhang J F, Li X X, Shangguan Y, Jin L, and Qin H 2022 Appl. Phys. Lett. 120 051103 |
[5] | Neugebauer G, Beichman C A, Soifer B T, Aumann H H, Chester T J, Gautier T N, Gillett F C, Hauser M G, Houck J R, Lonsdale C J, Low F J, and Young E T 1984 Science 224 14 |
[6] | Phillips T G and Keene J 1992 Proc. IEEE 80 1662 |
[7] | Solomon S, Rosenlof K H, Portmann R W, Daniel J S, Davis S M, Sanford T J, and Plattner G K 2010 Science 327 1219 |
[8] | Kloosterman J L, Hayton D J, Ren Y, Kao T Y, Hovenier J N, Gao J R, Klapwijk T M, Hu Q, Walker C K, and Reno J L 2013 Appl. Phys. Lett. 102 011123 |
[9] | Richter H, Buchbender C, Güsten R, Higgins R, Klein B, Stutzki J, Wiesemeyer H, and Hübers H W 2021 Commun. Earth Environ. 2 19 |
[10] | Lin Y J, Cakmakyapan S, Wang N, Lee D, Spearrin M, and Jarrahi M 2019 Opt. Express 27 36838 |
[11] | Koenig S, Lopez-Diaz D, Antes J et al. 2013 Nat. Photonics 7 977 |
[12] | Nagatsuma T, Ducournau G, and Renaud C C 2016 Nat. Photonics 10 371 |
[13] | Ding Q F, Zhu Y F, Xiang L Y, Zhang J F, Li X X, Jin L, Shangguan Y, Sun J D, and Qin H 2023 Appl. Phys. Express 16 024002 |
[14] | Siegel P H and Dengler R J 2006 Int. J. Infrared Millimeter Waves 27 465 |
[15] | Siegel P H and Dengler R J 2006 Int. J. Infrared Millimeter Waves 27 631 |
[16] | He Y, Liu G, Zhou J, Huang K, Jiang J, and Su W 2022 Microwave Opt. Technol. Lett. 64 1048 |
[17] | Lloyd-Hughes J and Jeon T I 2012 J. Infrared Millimeter Terahertz Waves 33 871 |
[18] | Park B C, Kim T H, Sim K I, Kang B, Kim J W, Cho B, Jeong K H, Cho M H, and Kim J H 2015 Nat. Commun. 6 6552 |
[19] | Sherman D, Pracht U S, Gorshunov B, Poran S, Jesudasan J, Chand M, Raychaudhuri P, Swanson M, Trivedi N, Auerbach A, Scheffler M, Frydman A, and Dressel M 2015 Nat. Phys. 11 188 |
[20] | Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, and Reno J L 2010 Appl. Phys. Lett. 97 161105 |
[21] | Crowe T W 1989 Int. J. Infrared Millimeter Waves 10 765 |
[22] | Uzawa Y, Wang Z, and Kawakami A 1998 Appl. Phys. Lett. 73 680 |
[23] | Jackson B D, Baryshev A M, de Lange G, Gao J R, Shitov S V, Iosad N N, and Klapwijk T M 2001 Appl. Phys. Lett. 79 436 |
[24] | Hu Z, Zhang L B, Chakraborty A, D'Olimpio G, Fujii J, Ge A P, Zhou Y C, Liu C L, Agarwal A, Vobornik I, Farias D, Kuo C N, Lue C S, Politano A, Wang S W, Hu W D, Chen X S, Lu W, and Wang L 2023 Adv. Mater. 35 2370071 |
[25] | Wang L, Han L, Guo W L, Zhang L B, Yao C Y, Chen Z, Chen Y L, Guo C, Zhang K X, Kuo C N, Lue C S, Politano A, Xing H Z, Jiang M J, Yu X B, Chen X S, and Lu W 2022 Light: Sci. & Appl. 11 53 |
[26] | Wang N, Cakmakyapan S, Lin Y J, Javadi H, and Jarrahi M 2019 Nat. Astron. 3 977 |
[27] | Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, and Shaffer J P 2012 Nat. Phys. 8 819 |
[28] | Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, and Zhu S L 2020 Phys. Rev. A 101 053432 |
[29] | Huang W, Liang Z T, Du Y X, Yan H, and Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) |
[30] | Meyer D H, O'Brien C, Fahey D P, Cox K C, and Kunz P D 2021 Phys. Rev. A 104 043103 |
[31] | Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F, and Zhong Z P 2023 Phys. Rev. A 107 043102 |
[32] | Tan C Z, Hu F C, Niu Z J, Jiang Y H, Weidemüller M, and Zhu B 2022 Chin. Phys. Lett. 39 093202 |
[33] | Wang H, Jiao Y, Zhao J, Xiao L, and Jia S 2022 Chin. Phys. Lett. 39 013401 |
[34] | Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, and Jia S 2020 Nat. Phys. 16 911 |
[35] | Wu F, An Q, Sun Z, and Fu Y 2023 Phys. Rev. A 107 043108 |
[36] | Meyer D H, Castillo Z A, Cox K C, and Kunz P D 2020 J. Phys. B 53 034001 |
[37] | Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, and Zhu S L 2021 Acta Phys. Sin. 70 060702 (in Chinese) |
[38] | Chen S, Reed D J, MacKellar A R, Downes L A, Almuhawish N F A, Jamieson M J, Adams C S, and Weatherill K J 2022 Optica 9 485 |
[39] | Lin Y Y, She Z Y, Chen Z W, Li X Z, Zhang C X, Liao K Y, Zhang X D, Chen J H, Huang W, Yan H, and Zhu S L 2023 Fund. Res. (in press) |
[40] | Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, and Weatherill K J 2017 Nat. Photonics 11 40 |
[41] | Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S, and Weatherill K J 2020 Phys. Rev. X 10 011027 |
[42] | Simons M T, Haddab A H, Gordon J A, and Holloway C L 2019 Appl. Phys. Lett. 114 114101 |
[43] | Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W, Yan H, and Zhu S L 2022 Phys. Rev. Appl. 18 054003 |
[44] | Preuschoff T, Schlosser M, and Birkl G 2018 Opt. Express 26 24010 |
[45] | Jia F, Zhang J, Zhang L, Wang F, Mei J, Yu Y, Zhong Z, and Xie F 2020 Appl. Opt. 59 2108 |
[46] | Meyer D H, Kunz P D, and Cox K C 2021 Phys. Rev. Appl. 15 014053 |
[47] | Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, and Qu J 2019 Opt. Express 27 8848 |
[48] | Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alù A, and Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001 |
[49] | Wu B, Lin Y, Wu F C, Chen X Z, An Q, Liu Y, and Fu Y Q 2023 Acta Phys. Sin. 72 034204 (in Chinese) |
[50] | Knarr S H, Bucklew V G, Langston J, Cox K C, Hill J C, Meyer D H, and Drakes J A 2023 arXiv:2302.07316 [quant-ph] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|