CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
From Topological Nodal-Line Semimetals to Quantum Spin Hall Insulators in Tetragonal SnX Monolayers (X = F, Cl, Br, I) |
Ye Zhu1, Bao Zhao2, Yang Xue3, Wei Xu1, Wenting Xu1, and Zhongqin Yang1,4* |
1State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai 200433, China 2Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China 3School of Physics, East China University of Science and Technology, Shanghai 200237, China 4Shanghai Qi Zhi Institute, Shanghai 200030, China
|
|
Cite this article: |
Ye Zhu, Bao Zhao, Yang Xue et al 2024 Chin. Phys. Lett. 41 067301 |
|
|
Abstract Two-dimensional (2D) topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics. Achieving various topological states within one type of materials is, however, seldom reported. Based on first-principles calculations and tight-binding models, we investigate topological electronic states in a novel family of 2D halogenated tetragonal stanene (T-SnX, X = F, Cl, Br, I). All the four monolayers are found to be unusual topological nodal-line semimetals (NLSs), protected by a glide mirror symmetry. When spin-orbit coupling (SOC) is turned on, T-SnF and T-SnCl are still ascertained as topological NLSs due to the remaining band inversion, primarily composed of Sn $p_{xy}$ orbitals, while T-SnBr and T-SnI become quantum spin Hall insulators. The phase transition is ascribed to moving up in energy of Sn $s$ orbitals and increasing of SOC strengths. The topology origin in the materials is uniformly rationalized through elementary band representations. The robust and diverse topological states found in the 2D T-SnX monolayers position them as an excellent material platform for development of innovative topological electronics.
|
|
Received: 04 March 2024
Published: 27 June 2024
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 |
[2] | Han M Y, Özyilmaz B, Zhang Y, and Kim P 2007 Phys. Rev. Lett. 98 206805 |
[3] | Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, and Geim A K 2008 Science 320 1308 |
[4] | Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, and Ajayan P M 2020 Adv. Mater. 32 1904302 |
[5] | Balendhran S, Walia S, Nili H, Sriram S, and Bhaskaran M 2015 Small 11 640 |
[6] | Gupta A, Sakthivel T, and Seal S 2015 Prog. Mater. Sci. 73 44 |
[7] | Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, and Akinwande D 2015 Nat. Nanotechnol. 10 227 |
[8] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, and Zhang Y 2014 Nat. Nanotechnol. 9 372 |
[9] | Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J, Xu X, Ye P D, and Wu W 2018 Nat. Electron. 1 228 |
[10] | Qin J K, Qiu G, Jian J, Zhou H, Yang L M, Charnas A, Zemlyanov D Y, Xu C Y, Xu X F, Wu W Z, Wang H Y, and Ye P D 2017 ACS Nano 11 10222 |
[11] | Jiang H R, Lu Z, Wu M C, Ciucci F, and Zhao T S 2016 Nano Energy 23 97 |
[12] | Liu C X, Zhang S C, and Qi X L 2016 Annu. Rev. Condens. Matter Phys. 7 301 |
[13] | Chang C Z, Liu C X, and MacDonald A H 2023 Rev. Mod. Phys. 95 011002 |
[14] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[15] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[16] | Zhao A and Wang B 2020 APL Mater. 8 030701 |
[17] | Hu J, Xu S Y, Ni N, and Mao Z 2019 Annu. Rev. Mater. Res. 49 207 |
[18] | Nagaosa N, Morimoto T, and Tokura Y 2020 Nat. Rev. Mater. 5 621 |
[19] | Sun J P, Zhang D, and Chang K 2017 Chin. Phys. Lett. 34 027102 |
[20] | Liu X, Bao H, Li Y, and Yang Z 2020 Sci. Rep. 10 21351 |
[21] | Lu J L, Luo W, Li X Y, Yang S Q, Cao J X, Gong X G, and Xiang H J 2017 Chin. Phys. Lett. 34 057302 |
[22] | Yang B, Zhang X, and Zhao M 2017 Nanoscale 9 8740 |
[23] | Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H, and Tong S Y 2017 Nanoscale 9 13112 |
[24] | Chen H, Zhang S, Jiang W, Zhang C, Guo H, Liu Z, Wang Z, Liu F, and Niu X 2018 J. Mater. Chem. A 6 11252 |
[25] | Gao Y, Chen Y, Xie Y, Chang P Y, Cohen M L, and Zhang S 2018 Phys. Rev. B 97 121108 |
[26] | Enyashin A N and Ivanovskii A L 2011 Phys. Status Solidi B 248 1879 |
[27] | Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gómez-Herrero J, Ares P, Zamora F, Zhu Z, and Zeng H 2018 Chem. Soc. Rev. 47 982 |
[28] | Bandyopadhyay A and Jana D 2020 Rep. Prog. Phys. 83 056501 |
[29] | Jana S, Bandyopadhyay A, Datta S, Bhattacharya D, and Jana D 2022 J. Phys.: Condens. Matter 34 053001 |
[30] | Liu Y, Wang G, Huang Q, Guo L, and Chen X 2012 Phys. Rev. Lett. 108 225505 |
[31] | Huang H, Li Y, Liu Z, Wu J, and Duan W 2013 Phys. Rev. Lett. 110 029603 |
[32] | Wu H, Qian Y, Du Z, Zhu R, Kan E, and Deng K 2017 Phys. Lett. A 381 3754 |
[33] | Xu C, Wang Y, Han R, Tu H, and Yan Y 2019 New J. Phys. 21 033005 |
[34] | Lin W X, Li J S, Wang W L, Liang S D, and Yao D X 2018 Sci. Rep. 8 1674 |
[35] | Ersan F, Aktürk E, and Ciraci S 2016 Phys. Rev. B 94 245417 |
[36] | Ghosal S, Chowdhury S, and Jana D 2021 Phys. Chem. Chem. Phys. 23 14608 |
[37] | Ghosal S and Jana D 2022 Appl. Phys. Rev. 9 021314 |
[38] | Ersan F, Kecik D, Özçelik V O, Kadioglu Y, Aktürk Ü O, Durgun E, Aktürk E, and Ciraci S 2019 Appl. Phys. Rev. 6 021308 |
[39] | Ghosal S, Chowdhury S, and Jana D 2021 ACS Appl. Mater. & Interfaces 13 59092 |
[40] | Tu H, Zhang J, Guo Z, and Xu C 2019 RSC Adv. 9 42245 |
[41] | Xu C, Zhang J, Guo M, and Wang L 2019 RSC Adv. 9 23142 |
[42] | Xu C, Zhang J, Guo Z, Yuan X, and Tian Y 2021 Solid State Commun. 331 114268 |
[43] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[44] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 |
[45] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[46] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[47] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[48] | Alfè D 2009 Comput. Phys. Commun. 180 2622 |
[49] | Gao J, Wu Q, Persson C, and Wang Z 2021 Comput. Phys. Commun. 261 107760 |
[50] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[51] | Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 |
[52] | Wu Q, Zhang S, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[53] | Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, and Zhang S C 2013 Phys. Rev. Lett. 111 136804 |
[54] | Zhao H, Zhu P, Wang Q, Cao H, Wu G, Hao J, Han L, Wu L, and Lu P 2021 J. Electron. Mater. 50 3334 |
[55] | Zhang J, Zhao B, Zhou T, Xue Y, Fang Y, Ma C, and Yang Z 2019 Phys. Rev. B 99 035409 |
[56] | Zhang R W, Liu C C, Ma D S, and Yao Y 2018 Phys. Rev. B 97 125312 |
[57] | Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y, and Matsuda I 2017 Nat. Commun. 8 1007 |
[58] | Zhang X, Yu Z M, Zhu Z, Wu W, Wang S S, Sheng X L, and Yang S A 2018 Phys. Rev. B 97 235150 |
[59] | Bao H, Zhao B, Xue Y, Huan H, Gao G, Liu X, and Yang Z 2021 Nanoscale 13 3161 |
[60] | Xia Q, Li N, Ji W X, Zhang C W, Ding M, Ren M J, and Li S S 2023 Nanoscale 15 1365 |
[61] | Xia Q, Hu Y, Wang Y P, Zhang C W, Ren M J, Li S S, and Ji W X 2022 Nanoscale 14 1264 |
[62] | Liu C C, Guan S, Song Z, Yang S A, Yang J, and Yao Y 2014 Phys. Rev. B 90 085431 |
[63] | Fu L and Kane C L 2007 Phys. Rev. B 76 045302 |
[64] | Yu R, Qi X L, Bernevig A, Fang Z, and Dai X 2011 Phys. Rev. B 84 075119 |
[65] | Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I, and Bernevig B A 2017 Nature 547 298 |
[66] | Cano J and Bradlyn B 2021 Annu. Rev. Condens. Matter Phys. 12 225 |
[67] | Cano J, Bradlyn B, Wang Z, Elcoro L, Vergniory M G, Felser C, Aroyo M I, and Bernevig B A 2018 Phys. Rev. Lett. 120 266401 |
[68] | Bouhon A, Black-Schaffer A M, and Slager R J 2019 Phys. Rev. B 100 195135 |
[69] | Niu C, Buhl P M, Bihlmayer G, Wortmann D, Dai Y, Blügel S, and Mokrousov Y 2017 Phys. Rev. B 95 235138 |
[70] | Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, and Jia J F 2015 Nat. Mater. 14 1020 |
[71] | Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A, and Le Lay G 2018 2D Mater. 5 025002 |
[72] | Slater J C and Koster G F 1954 Phys. Rev. 94 1498 |
[73] | König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, and Zhang S C 2007 Science 318 766 |
[74] | Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, and Gottfried J M 2021 Science 372 852 |
[75] | Feng W, Long P, Feng Y, and Li Y 2016 Adv. Sci. 3 1500413 |
[76] | Jiang P, Kang L, Zheng X, Zeng Z, and Sanvito S 2020 Phys. Rev. B 102 195408 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|