Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 067401    DOI: 10.1088/0256-307X/41/6/067401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Low-Energy Spin Excitations in Detwinned FeSe
Ruixian Liu1*, Mitsutaka Nakamura2, Kazuya Kamazawa3, and Xingye Lu1*
1Center for Advanced Quantum Studies, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
2J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan
3Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
Cite this article:   
Ruixian Liu, Mitsutaka Nakamura, Kazuya Kamazawa et al  2024 Chin. Phys. Lett. 41 067401
Download: PDF(1003KB)   PDF(mobile)(1060KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-$T_{\rm c}$ superconductors. In iron-based superconductors, spin excitations at low energy range, especially the spin-resonance mode at $E_{\rm R} \sim5k_{\rm B}T_{\rm c}$, are important for understanding the superconductivity. Here, we use inelastic neutron scattering (INS) to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned FeSe. The low-energy spin excitations ($E < 10$ meV) appear mainly at ${\boldsymbol Q} = (\pm 1,\, 0)$ in the superconducting state ($T\lesssim9$ K) and the nematic state ($T\lesssim90$ K), confirming the constant $C_2$ rotational symmetry and ruling out the $C_4$ mode at $E\approx3$ meV reported in a prior INS study. Moreover, our results reveal an isotropic spin resonance in the superconducting state, which is consistent with the $s^{\pm}$ wave pairing symmetry. At slightly higher energy, low-energy spin excitations become highly anisotropic. The full width at half maximum of spin excitations is elongated along the transverse direction. The $Q$-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from $d_{yz}$ intra-orbital selective Fermi surface nesting between the hole pocket around $\varGamma$ point and the electron pockets centered at $M_{\rm X}$ point.
Received: 06 February 2024      Published: 20 June 2024
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/067401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/067401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruixian Liu
Mitsutaka Nakamura
Kazuya Kamazawa
and Xingye Lu
[1] Chen X H, Dai P C, Feng D L, Xiang T, and Zhang F C 2014 Natl. Sci. Rev. 1 371
[2] Kordyuk A A 2012 Low Temp. Phys. 38 888
[3] Inosov D S, Park J T, Charnukha A, Li Y, Boris A V, Keimer B, and Hinkov V 2011 Phys. Rev. B 83 214520
[4] Yu G, Li Y, Motoyama E M, and Greven M 2009 Nat. Phys. 5 873
[5] Hirschfeld P J, Korshunov M M, and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[6] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, and Luo H 2020 Phys. Rev. Lett. 125 117002
[7] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[8] Dai P 2015 Rev. Mod. Phys. 87 855
[9] Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E A, Perring T G, Maier T A, Yin Z, Haule K, Kotliar G, and Dai P 2013 Nat. Commun. 4 2874
[10] Yin Z P, Haule K, and Kotliar G 2014 Nat. Phys. 10 845
[11] Li H F, Broholm C, Vaknin D, Fernandes R M, Abernathy D L, Stone M B, Pratt D K, Tian W, Qiu Y, Ni N, Diallo S O, Zarestky J L, Bud'ko S L, Canfield P C, and McQueeney R J 2010 Phys. Rev. B 82 140503
[12] Coldea A I and Watson M D 2018 Annu. Rev. Condens. Matter Phys. 9 125
[13] Böhmer A E and Kreisel A 2018 J. Phys.: Condens. Matter 30 023001
[14] Shibauchi T, Hanaguri T, and Matsuda Y 2020 J. Phys. Soc. Jpn. 89 102002
[15] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, and Felser C 2009 Nat. Mater. 8 630
[16] Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H, and Wang W Y 2012 Sci. Rep. 2 426
[17] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H, and Conder K 2011 J. Phys.: Condens. Matter 23 052203
[18] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, and Chen X 2010 Phys. Rev. B 82 180520
[19] Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, and Jia J F 2015 Nat. Mater. 14 285
[20] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[21] He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K, and Zhou X J 2013 Nat. Mater. 12 605
[22] Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, and Feng D L 2013 Nat. Mater. 12 634
[23] Yi M, Pfau H, Zhang Y, He Y, Wu H, Chen T, Ye Z R, Hashimoto M, Yu R, Si Q, Lee D H, Dai P C, Shen Z X, Lu D H, and Birgeneau R J 2019 Phys. Rev. X 9 041049
[24] Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, and Zhao J 2016 Nat. Mater. 15 159
[25] Chen T, Chen Y, Kreisel A, Lu X, Schneidewind A, Qiu Y, Park J T, Perring T G, Stewart J R, Cao H, Zhang R, Li Y, Rong Y, Wei Y, Andersen B M, Hirschfeld P J, Broholm C, and Dai P 2019 Nat. Mater. 18 709
[26] Lu X Y, Zhang W L, Tseng Y, Liu R X, Tao Z, Paris E, Liu P P, Chen T, Strocov V N, Song Y, Yu R, Si Q M, Dai P C, and Schmitt T 2022 Nat. Phys. 18 806
[27] Liu R X, Stone M B, Gao S, Nakamura M, Kamazawa K, Krajewska A, Walker H C, Cheng P, Yu R, Si Q M, Dai P C, and Lu X Y 2024 arXiv:2401.05092 [cond-mat.supr-con]
[28] Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, and Zhao J 2016 Nat. Commun. 7 12182
[29] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, and Davis J C S 2017 Science 357 75
[30] Hirschfeld P J, Altenfeld D, Eremin I, and Mazin I I 2015 Phys. Rev. B 92 184513
[31] Tanatar M A, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I, and Prozorov R 2009 Phys. Rev. B 79 180508
[32] Luo H, Yamani Z, Chen Y, Lu X, Wang M, Li S, Maier T A, Danilkin S, Adroja D T, and Dai P 2012 Phys. Rev. B 86 024508
[33] Zhang J, Sknepnek R, and Schmalian J 2010 Phys. Rev. B 82 134527
[34] Zhang C L, Wang M, Luo H Q, Wang M Y, Liu M S, Zhao J, Abernathy D L, Maier T A, Marty K, Lumsden M D, Chi S X, Chang S, Rodriguez-Rivera J A, Lynn J W, Xiang T, Hu J P, and Dai P C 2011 Sci. Rep. 1 115
[35] Graser S, Kemper A F, Maier T A, Cheng H P, Hirschfeld P J, and Scalapino D J 2010 Phys. Rev. B 81 214503
[36] Yan J Q, Sales B C, Susner M A, and McGuire M A 2017 Phys. Rev. Mater. 1 023402
[37] Kajimoto R, Nakamura M, Inamura Y, Mizuno F, Nakajima K, Ohira-Kawamura S, Yokoo T, Nakatani T, Maruyama R, Soyama K, Shibata K, Suzuya K, Sato S, Aizawa K, Arai M, Wakimoto S, Ishikado M, Shamoto S i, Fujita M, Hiraka H, Ohoyama K, Yamada K, and Lee C H 2011 J. Phys. Soc. Jpn. 80 SB025
[38] Seto H, Itoh S, Yokoo T, Endo H, Nakajima K, Shibata K, Kajimoto R, Ohira-Kawamura S, Nakamura M, Kawakita Y, Nakagawa H, and Yamada T 2017 Biochimica et Biophysica Acta-General Subjects 1861 3651
[39] Nakamura M, Kambara W, Iida K, Kajimoto R, Kamazawa K, Ikeuchi K, Ishikado M, and Aoyama K 2018 Physica B 551 480
[40] Chen T, Chen Y Z, Tam D W, Gao B, Qiu Y M, Schneidewind A, Radelytskyi I, Prokes K, Chi S X, Matsuda M, Broholm C, and Dai P C 2020 Phys. Rev. B 101 140504
[41] Diallo S O, Pratt D K, Fernandes R M, Tian W, Zarestky J L, Lumsden M, Perring T G, Broholm C L, Ni N, Bud'ko S L, Canfield P C, Li H F, Vaknin D, Kreyssig A, Goldman A I, and McQueeney R J 2010 Phys. Rev. B 81 214407
[42] Park J T, Inosov D S, Yaresko A, Graser S, Sun D L, Bourges P, Sidis Y, Li Y, Kim J H, Haug D, Ivanov A, Hradil K, Schneidewind A, Link P, Faulhaber E, Glavatskyy I, Lin C T, Keimer B, and Hinkov V 2010 Phys. Rev. B 82 134503
[43] Lester C, Chu J H, Analytis J G, Perring T G, Fisher I R, and Hayden S M 2010 Phys. Rev. B 81 064505
[44] Tian L, Liu P P, Xu Z, Li Y, Lu Z L, Walker H C, Stuhr U, Tan G T, Lu X Y, and Dai P C 2019 Phys. Rev. B 100 134509
[45] Liu M, Harriger L W, Luo H, Wang M, Ewings R A, Guidi T, Park H, Haule K, Kotliar G, Hayden S M, and Dai P 2012 Nat. Phys. 8 376
Related articles from Frontiers Journals
[1] Hong-Xing Zhan, Yu-Chi Lin, Yu-Qing Zhao, Hai-Yan Zuo, Xing-Yu Wang, Xiao-Yan Ma, Chun-Hong Li, Hui-Qian Luo, Gen-Fu Chen, Shi-Liang Li, and Cong Ren. Anisotropic s-Wave Gap in the Vicinity of a Quantum Critical Point in Superconducting BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_2$ Single Crystals: A Study of Point-Contact Spectroscopy[J]. Chin. Phys. Lett., 2024, 41(4): 067401
[2] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 067401
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 067401
[4] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 067401
[5] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 067401
[6] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 067401
[7] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 067401
[8] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067401
[9] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 067401
[10] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 067401
[11] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 067401
[12] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 067401
[13] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 067401
[14] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 067401
[15] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 067401
Viewed
Full text


Abstract