CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Quantum Anomalous Hall Effect with Tunable Chern Numbers in High-Temperature 1T-PrN$_2$ Monolayer |
Xu-Cai Wu, Shu-Zong Li, Jun-Shan Si, Bo Huang, and Wei-Bing Zhang* |
Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China |
|
Cite this article: |
Xu-Cai Wu, Shu-Zong Li, Jun-Shan Si et al 2024 Chin. Phys. Lett. 41 057303 |
|
|
Abstract Quantum anomalous Hall (QAH) insulators have highly potential applications in spintronic device. However, available candidates with tunable Chern numbers and high working temperature are quite rare. Here, we predict a 1T-PrN$_2$ monolayer as a stable QAH insulator with high magnetic transition temperature of above 600 K and tunable high Chern numbers of $C = \pm3$ from first-principles calculations. Without spin-orbit coupling (SOC), the 1T-PrN$_2$ monolayer is predicted to be a p-state Dirac half metal with high Fermi velocity. Rich topological phases depending on magnetization directions can be found when the SOC is considered. The QAH effect with periodical changes of Chern number ($\pm1$) can be produced when the magnetic moment breaks all twofold rotational symmetries in the $xy$ plane. The critical state can be identified as Weyl half semimetals. When the magnetization direction is parallel to the $z$-axis, the system exhibits high Chern number QAH effect with $C = \pm3$. Our work provides a new material for exploring novel QAH effect and developing high-performance topological devices.
|
|
Received: 17 February 2024
Published: 15 May 2024
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
63.20.dk
|
(First-principles theory)
|
|
|
|
|
[1] | Haldane F D M 1988 Phys. Rev. Lett. 61 2015 |
[2] | Chang C Z, Liu C X, and MacDonald A H 2023 Rev. Mod. Phys. 95 011002 |
[3] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[4] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[5] | Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science 340 167 |
[6] | Lee I, Kim C K, Lee J, Billinge S J L, Zhong R, Schneeloch J A, Liu T, Valla T, Tranquada J M, Gu G, and Davis J C S 2015 Proc. Natl. Acad. Sci. USA 112 1316 |
[7] | Lachman E O, Young A F, Richardella A, Cuppens J, Naren H R, Anahory Y, Meltzer A Y, Kandala A, Kempinger S, Myasoedov Y, Huber M E, Samarth N, and Zeldov E 2015 Sci. Adv. 1 e1500740 |
[8] | Qi S, Liu Z, Chang M, Gao R, Han Y, and Qiao Z 2020 Phys. Rev. B 101 241407 |
[9] | Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, and Zhang Y 2020 Science 367 895 |
[10] | Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, and He K 2019 Chin. Phys. Lett. 36 076801 |
[11] | Jiang H, Qiao Z, Liu H, and Niu Q 2012 Phys. Rev. B 85 045445 |
[12] | Wang J, Lian B, Zhang H, Xu Y, and Zhang S C 2013 Phys. Rev. Lett. 111 136801 |
[13] | Duong L Q, Lin H, Tsai W F, and Feng Y P 2015 Phys. Rev. B 92 115205 |
[14] | Zeng J, Ren Y, Zhang K, and Qiao Z 2017 Phys. Rev. B 95 045424 |
[15] | Zhu W, Song C, Bai H, Liao L, and Pan F 2022 Phys. Rev. B 105 155122 |
[16] | Li Z, Han Y, and Qiao Z 2022 Phys. Rev. Lett. 129 036801 |
[17] | Liu Z, Liu J, and Zhao J 2017 Nano Res. 10 1972 |
[18] | Kong X, Li L, Leenaerts O, Wang W, Liu X J, and Peeters F M 2018 Nanoscale 10 8153 |
[19] | Jin L, Wang L, Zhang X, Liu Y, Dai X, Gao H, and Liu G 2021 Nanoscale 13 5901 |
[20] | Yu Y, Chen X, Liu X, Li J, Sanyal B, Kong X, Peeters F M, and Li L 2022 Phys. Rev. B 105 024407 |
[21] | Li S, Li X, Ji W, Li P, Yan S, and Zhang C 2023 Phys. Chem. Chem. Phys. 25 18275 |
[22] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[23] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[24] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[25] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[26] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[27] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[28] | Togo A 2023 J. Phys. Soc. Jpn. 92 012001 |
[29] | Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, and Yates J R 2020 J. Phys.: Condens. Matter 32 165902 |
[30] | Kim H J 2018 VASPBERRY: Berry curvature calculation code for VASP output, Zenodo |
[31] | Kim S W, Kim H J, Cheon S, and Kim T H 2022 Phys. Rev. Lett. 128 046401 |
[32] | Wu Q, Zhang S, Song H F, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[33] | Li L, Kong X, Chen X, Li J, Sanyal B, and Peeters F M 2020 Appl. Phys. Lett. 117 143101 |
[34] | Lin Z Z and Chen X 2020 Appl. Surf. Sci. 529 147129 |
[35] | Pyykkö P 1988 Chem. Rev. 88 563 |
[36] | Seth M, Dolg M, Fulde P, and Schwerdtfeger P 1995 J. Am. Chem. Soc. 117 6597 |
[37] | Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429 |
[38] | Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K, and Parkin S S P 2021 Science 374 616 |
[39] | Tobochnik J and Chester G V 1979 Phys. Rev. B 20 3761 |
[40] | Ota S, Ota S B, and Fahnle M 1992 J. Phys.: Condens. Matter 4 5411 |
[41] | Jiao Y, Ma F, Bell J, Bilic A, and Du A 2016 Angew. Chem. 128 10448 |
[42] | Wang Y and Ding Y 2013 Solid State Commun. 155 6 |
[43] | You J Y, Chen C, Zhang Z, Sheng X L, Yang S A, and Su G 2019 Phys. Rev. B 100 064408 |
[44] | Huan H, Xue Y, Zhao B, Bao H, Liu L, and Yang Z 2022 Phys. Rev. B 106 125404 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|