Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 057302    DOI: 10.1088/0256-307X/41/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Tunable Large Anomalous Hall Effect in Ferromagnetic Metal LiMn$_{{6}}$Sn$_{{6}}$
Lingling Gao1†, Junwen Lai2†, Dong Chen3,4†, Cuiying Pei1, Qi Wang1,5, Yi Zhao1, Changhua Li1, Weizheng Cao1, Juefei Wu1, Yulin Chen1,5,6, Xingqiu Chen2,7, Yan Sun2,7*, Claudia Felser3*, and Yanpeng Qi1,5,8*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
4College of Physics, Qingdao University, Qingdao 266071, China
5ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
6Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
7School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
8Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
Cite this article:   
Lingling Gao, Junwen Lai, Dong Chen et al  2024 Chin. Phys. Lett. 41 057302
Download: PDF(1773KB)   PDF(mobile)(1884KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, giant intrinsic anomalous Hall effect (AHE) has been observed in the materials with kagome lattice. Here, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn$_{6}$Sn$_{6}$ with clean Mn kagome lattice. Our in situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn$_{6}$Sn$_{6}$ maintains a hexagonal phase under high pressures up to 8.51 GPa. The anomalous Hall conductivity (AHC) $\sigma_{xy}^{\rm A}$ remains around 150 $\Omega^{{-1}}\cdot$cm$^{{-1}}$, dominated by the intrinsic mechanism. Combined with theoretical calculations, our results indicate that the stable AHE under pressure in LiMn$_{6}$Sn$_{6}$ originates from the robust electronic and magnetic structure.
Received: 17 January 2024      Published: 28 May 2024
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  73.43.-f (Quantum Hall effects)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/057302       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lingling Gao
Junwen Lai
Dong Chen
Cuiying Pei
Qi Wang
Yi Zhao
Changhua Li
Weizheng Cao
Juefei Wu
Yulin Chen
Xingqiu Chen
Yan Sun
Claudia Felser
and Yanpeng Qi
[1] Hall E H 1880 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10 301
[2] Hall E H 1881 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12 157
[3] Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539
[4] Tian Y, Ye L, and Jin X 2009 Phys. Rev. Lett. 103 087206
[5] Berger L 1970 Phys. Rev. B 2 4559
[6] Smit J 1955 Physica 21 877
[7] Smit J 1958 Physica 24 39
[8] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
[9] Kumar N, Guin S N, Manna K, Shekhar C, and Felser C 2021 Chem. Rev. 121 2780
[10] Bernevig B A, Felser C, and Beidenkopf H 2022 Nature 603 41
[11] Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647
[12] Wang Q, Sun S, Zhang X, Pang F, and Lei H 2016 Phys. Rev. B 94 075135
[13] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638
[14] Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212
[15] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282
[16] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[17] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, and Lei H 2018 Nat. Commun. 9 3681
[18] Asaba T, Thomas S M, Curtis M, Thompson J D, Bauer E D, and Ronning F 2020 Phys. Rev. B 101 174415
[19] Chen D, Le C, Fu C, Lin H, Schnelle W, Sun Y, and Felser C 2021 Phys. Rev. B 103 144410
[20] Gu X, Chen C, Wei W S, Gao L L, Liu J Y, Du X, Pei D, Zhou J S, Xu R Z, Yin Z X, Zhao W X, Li Y D, Jozwiak C, Bostwick A, Rotenberg E, Backes D, Veiga L S I, Dhesi S, Hesjedal T, van der Laan G, Du H F, Jiang W J, Qi Y P, Li G, Shi W J, Liu Z K, Chen Y L, and Yang L X 2022 Phys. Rev. B 105 155108
[21] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z, and Jia S 2021 Phys. Rev. Lett. 126 246602
[22] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Zahid Hasan M 2020 Nature 583 533
[23] Wang Q, Neubauer K J, Duan C, Yin Q, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S, Krycka K, Lei H, and Dai P 2021 Phys. Rev. B 103 014416
[24] Gao L, Shen S, Wang Q, Shi W, Zhao Y, Li C, Cao W, Pei C, Ge J Y, Li G, Li J, Chen Y, Yan S, and Qi Y 2021 Appl. Phys. Lett. 119 092405
[25] Mazet T, Ihou-Mouko H, Marêché J F, and Malaman B 2006 Eur. Phys. J. B 51 173
[26] Mazet T, Venturini G, Welter R, and Malaman B 1998 J. Alloys Compd. 264 71
[27] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y, Li G, Lei H, Li J, Chen Y, Yan S, and Qi Y 2021 Adv. Mater. 33 2102813
[28] Pei C, Ying T, Zhao Y, Gao L, Cao W, Li C, Hosono H, and Qi Y 2022 Matter Radiat. Extremes 7 038404
[29] Pei C, Zhang J, Wang Q, Zhao Y, Gao L, Gong C, Tian S, Luo R, Li M, Yang W, Lu Z Y, Lei H, Liu K, and Qi Y 2023 Natl. Sci. Rev. 10 nwad034
[30] Pei C, Ying T, Zhang Q, Wu X, Yu T, Zhao Y, Gao L, Li C, Cao W, Zhang Q, Schnyder A P, Gu L, Chen X, Hosono H, and Qi Y 2022 J. Am. Chem. Soc. 144 6208
[31] Chen X, Wang M, Gu C, Wang S, Zhou Y, An C, Zhou Y, Zhang B, Chen C, Yuan Y, Qi M, Zhang L, Zhou H, Zhou J, Yao Y, and Yang Z 2019 Phys. Rev. B 100 165145
[32] Lee M, Kang W, Onose Y, Tokura Y, and Ong N P 2009 Phys. Rev. Lett. 102 186601
[33] Liu Z Y, Zhang T, Xu S X, Yang P T, Wang Q, Lei H C, Sui Y, Uwatoko Y, Wang B S, Weng H M, Sun J P, and Cheng J G 2020 Phys. Rev. Mater. 4 044203
[34] O'Hara D J, Brubaker Z E, Stillwell R L, O'Bannon E F, Baker A A, Weber D, Aji L B B, Goldberger J E, Kawakami R K, Zieve R J, Jeffries J R, and McCall S K 2020 Phys. Rev. B 102 054405
[35] Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z, and Zhang Z 2019 Phys. Rev. B 100 014407
[36] Zhou Y, Chen X, Zhou Y, Yu J, Zhu X, An C, Park C, Wan X, Yang X, and Yang Z 2022 Sci. Chin. Phys. Mech. & Astron. 65 288211
[37] Gao L, Wu J, Xi M, Pei C, Wang Q, Zhao Y, Tian S, Li C, Cao W, Chen Y, Lei H, and Qi Y 2023 Appl. Phys. Lett. 122 172404
[38] Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2014 Comput. Phys. Commun. 185 2309
[42] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[43] Pei C, Jin S, Huang P, Vymazalova A, Gao L, Zhao Y, Cao W, Li C, Nemes-Incze P, Chen Y, Liu H, Li G, and Qi Y 2021 npj Quantum Mater. 6 98
[44] Kong X, Tao Z, Zhang R, Xia W, Chen X, Pei C, Ying T, Qi Y, Guo Y, Yang X, and Li S 2024 Chin. Phys. Lett. 41 047503
Related articles from Frontiers Journals
[1] Yue Li, Jingyi Liu, Binbin Wu, Yu Tao, Yanlei Geng, Xiaoli Wang, and Li Lei. Pressure-Driven Energy Band Gap Narrowing of $\lambda$-N$_{{2}}$[J]. Chin. Phys. Lett., 2024, 41(4): 057302
[2] Pengfei Shan, Ningning Wang, Xiquan Zheng, Qingzheng Qiu, Yingying Peng, and Jinguang Cheng. Pressure-Induced Color Change in the Lutetium Dihydride LuH$_{2}$[J]. Chin. Phys. Lett., 2023, 40(4): 057302
[3] Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures[J]. Chin. Phys. Lett., 2022, 39(11): 057302
[4] Yukai Zhuang, Junwei Li, Wenhua Lu, Xueping Yang, Zhixue Du, and Qingyang Hu. High Temperature Melting Curve of Basaltic Glass by Laser Flash Heating[J]. Chin. Phys. Lett., 2022, 39(2): 057302
[5] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 057302
[6] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 057302
[7] Yan-Xing Shang, Fang Hong, Jian-Hong Dai, Hui-Yu, Ya-Nan Lu, En-Ke Liu, Xiao-Hui Yu, Gang-Qin Liu, Xin-Yu Pan. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins[J]. Chin. Phys. Lett., 2019, 36(8): 057302
[8] Xiao-Lin Ni, Lei-Ming Fang, Xin Li, Xi-Ping Chen, Lei Xie, Duan-Wei He, Zi-Li Kou. Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells[J]. Chin. Phys. Lett., 2018, 35(4): 057302
[9] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 057302
[10] Zhen Yuan, Jin-Long Zhu, Shao-Min Feng, Chang-Chun Wang, Li-Juan Wang, Qing-Qing Liu, Chang-Qing Jin. Wide-Temperature-Range Dielectric Permittivity Measurement under High Pressure[J]. Chin. Phys. Lett., 2017, 34(4): 057302
[11] Xiao-Yan Cui, Ting-Jing Hu, Jing-Shu Wang, Jun-Kai Zhang, Xue-Fei Li, Jing-Hai Yang, Chun-Xiao Gao. Pressure Effects on the Charge Carrier Transportation of BaF$_{2}$ Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(4): 057302
[12] YANG Shuang, DING Kun, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Bandgap Engineering in Wurtzite GaAs Nanowires by Hydrostatic Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 057302
[13] HU Ting-Jing, CUI Xiao-Yan, LI Xue-Fei, WANG Jing-Shu, YANG Jing-Hai, GAO Chun-Xiao. In Situ Electrical Resistivity and Hall Effect Measurement of β-HgS under High Pressure[J]. Chin. Phys. Lett., 2015, 32(01): 057302
[14] YANG Jie, PENG Gang, LIU Cai-Long, LU Han, HAN Yong-Hao, GAO Chun-Xiao . The Effect of By-pass Current on the Accuracy of Resistivity Measurement in a Diamond Anvil Cell[J]. Chin. Phys. Lett., 2013, 30(6): 057302
[15] ZHAO Bei-Jing, LIU Fu-Sheng, ZHANG Ning-Chao, FENG Li-Peng,WANG Wen-Peng, ZHANG Ming-Jian. A High-Spectral-Resolution Laser Raman System and Its Application in Shock–Compressed Benzene[J]. Chin. Phys. Lett., 2013, 30(3): 057302
Viewed
Full text


Abstract