CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Tunable Large Anomalous Hall Effect in Ferromagnetic Metal LiMn$_{{6}}$Sn$_{{6}}$ |
Lingling Gao1†, Junwen Lai2†, Dong Chen3,4†, Cuiying Pei1, Qi Wang1,5, Yi Zhao1, Changhua Li1, Weizheng Cao1, Juefei Wu1, Yulin Chen1,5,6, Xingqiu Chen2,7, Yan Sun2,7*, Claudia Felser3*, and Yanpeng Qi1,5,8* |
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany 4College of Physics, Qingdao University, Qingdao 266071, China 5ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China 6Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK 7School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 8Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
|
|
Cite this article: |
Lingling Gao, Junwen Lai, Dong Chen et al 2024 Chin. Phys. Lett. 41 057302 |
|
|
Abstract Recently, giant intrinsic anomalous Hall effect (AHE) has been observed in the materials with kagome lattice. Here, we systematically investigate the influence of high pressure on the AHE in the ferromagnet LiMn$_{6}$Sn$_{6}$ with clean Mn kagome lattice. Our in situ high-pressure Raman spectroscopy indicates that the crystal structure of LiMn$_{6}$Sn$_{6}$ maintains a hexagonal phase under high pressures up to 8.51 GPa. The anomalous Hall conductivity (AHC) $\sigma_{xy}^{\rm A}$ remains around 150 $\Omega^{{-1}}\cdot$cm$^{{-1}}$, dominated by the intrinsic mechanism. Combined with theoretical calculations, our results indicate that the stable AHE under pressure in LiMn$_{6}$Sn$_{6}$ originates from the robust electronic and magnetic structure.
|
|
Received: 17 January 2024
Published: 28 May 2024
|
|
PACS: |
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
|
|
|
[1] | Hall E H 1880 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10 301 |
[2] | Hall E H 1881 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 12 157 |
[3] | Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539 |
[4] | Tian Y, Ye L, and Jin X 2009 Phys. Rev. Lett. 103 087206 |
[5] | Berger L 1970 Phys. Rev. B 2 4559 |
[6] | Smit J 1955 Physica 21 877 |
[7] | Smit J 1958 Physica 24 39 |
[8] | Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154 |
[9] | Kumar N, Guin S N, Manna K, Shekhar C, and Felser C 2021 Chem. Rev. 121 2780 |
[10] | Bernevig B A, Felser C, and Beidenkopf H 2022 Nature 603 41 |
[11] | Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647 |
[12] | Wang Q, Sun S, Zhang X, Pang F, and Lei H 2016 Phys. Rev. B 94 075135 |
[13] | Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638 |
[14] | Nakatsuji S, Kiyohara N, and Higo T 2015 Nature 527 212 |
[15] | Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, and Chen Y L 2019 Science 365 1282 |
[16] | Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125 |
[17] | Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S, and Lei H 2018 Nat. Commun. 9 3681 |
[18] | Asaba T, Thomas S M, Curtis M, Thompson J D, Bauer E D, and Ronning F 2020 Phys. Rev. B 101 174415 |
[19] | Chen D, Le C, Fu C, Lin H, Schnelle W, Sun Y, and Felser C 2021 Phys. Rev. B 103 144410 |
[20] | Gu X, Chen C, Wei W S, Gao L L, Liu J Y, Du X, Pei D, Zhou J S, Xu R Z, Yin Z X, Zhao W X, Li Y D, Jozwiak C, Bostwick A, Rotenberg E, Backes D, Veiga L S I, Dhesi S, Hesjedal T, van der Laan G, Du H F, Jiang W J, Qi Y P, Li G, Shi W J, Liu Z K, Chen Y L, and Yang L X 2022 Phys. Rev. B 105 155108 |
[21] | Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z, and Jia S 2021 Phys. Rev. Lett. 126 246602 |
[22] | Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Zahid Hasan M 2020 Nature 583 533 |
[23] | Wang Q, Neubauer K J, Duan C, Yin Q, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S, Krycka K, Lei H, and Dai P 2021 Phys. Rev. B 103 014416 |
[24] | Gao L, Shen S, Wang Q, Shi W, Zhao Y, Li C, Cao W, Pei C, Ge J Y, Li G, Li J, Chen Y, Yan S, and Qi Y 2021 Appl. Phys. Lett. 119 092405 |
[25] | Mazet T, Ihou-Mouko H, Marêché J F, and Malaman B 2006 Eur. Phys. J. B 51 173 |
[26] | Mazet T, Venturini G, Welter R, and Malaman B 1998 J. Alloys Compd. 264 71 |
[27] | Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y, Li G, Lei H, Li J, Chen Y, Yan S, and Qi Y 2021 Adv. Mater. 33 2102813 |
[28] | Pei C, Ying T, Zhao Y, Gao L, Cao W, Li C, Hosono H, and Qi Y 2022 Matter Radiat. Extremes 7 038404 |
[29] | Pei C, Zhang J, Wang Q, Zhao Y, Gao L, Gong C, Tian S, Luo R, Li M, Yang W, Lu Z Y, Lei H, Liu K, and Qi Y 2023 Natl. Sci. Rev. 10 nwad034 |
[30] | Pei C, Ying T, Zhang Q, Wu X, Yu T, Zhao Y, Gao L, Li C, Cao W, Zhang Q, Schnyder A P, Gu L, Chen X, Hosono H, and Qi Y 2022 J. Am. Chem. Soc. 144 6208 |
[31] | Chen X, Wang M, Gu C, Wang S, Zhou Y, An C, Zhou Y, Zhang B, Chen C, Yuan Y, Qi M, Zhang L, Zhou H, Zhou J, Yao Y, and Yang Z 2019 Phys. Rev. B 100 165145 |
[32] | Lee M, Kang W, Onose Y, Tokura Y, and Ong N P 2009 Phys. Rev. Lett. 102 186601 |
[33] | Liu Z Y, Zhang T, Xu S X, Yang P T, Wang Q, Lei H C, Sui Y, Uwatoko Y, Wang B S, Weng H M, Sun J P, and Cheng J G 2020 Phys. Rev. Mater. 4 044203 |
[34] | O'Hara D J, Brubaker Z E, Stillwell R L, O'Bannon E F, Baker A A, Weber D, Aji L B B, Goldberger J E, Kawakami R K, Zieve R J, Jeffries J R, and McCall S K 2020 Phys. Rev. B 102 054405 |
[35] | Wang X, Li Z, Zhang M, Hou T, Zhao J, Li L, Rahman A, Xu Z, Gong J, Chi Z, Dai R, Wang Z, Qiao Z, and Zhang Z 2019 Phys. Rev. B 100 014407 |
[36] | Zhou Y, Chen X, Zhou Y, Yu J, Zhu X, An C, Park C, Wan X, Yang X, and Yang Z 2022 Sci. Chin. Phys. Mech. & Astron. 65 288211 |
[37] | Gao L, Wu J, Xi M, Pei C, Wang Q, Zhao Y, Tian S, Li C, Cao W, Chen Y, Lei H, and Qi Y 2023 Appl. Phys. Lett. 122 172404 |
[38] | Mao H K, Xu J, and Bell P M 1986 J. Geophys. Res.: Solid Earth 91 4673 |
[39] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[40] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[41] | Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2014 Comput. Phys. Commun. 185 2309 |
[42] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 |
[43] | Pei C, Jin S, Huang P, Vymazalova A, Gao L, Zhao Y, Cao W, Li C, Nemes-Incze P, Chen Y, Liu H, Li G, and Qi Y 2021 npj Quantum Mater. 6 98 |
[44] | Kong X, Tao Z, Zhang R, Xia W, Chen X, Pei C, Ying T, Qi Y, Guo Y, Yang X, and Li S 2024 Chin. Phys. Lett. 41 047503 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|