CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Influence of High-Pressure Induced Lattice Dislocations and Distortions on Thermoelectric Performance of Pristine SnTe |
Bowen Zheng1†, Tao Chen3,4†, Hairui Sun1,2*, Manman Yang5, Bingchao Yang1,2, Xin Chen1,2, Yongsheng Zhang1,2*, and Xiaobing Liu1,2* |
1Laboratory of High-Pressure Physics and Materials Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China 2Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, China 3Key Lab of Photovoltaic and Energy Conservation Materials Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 4University of Science and Technology of China, Hefei 230026, China 5School of Electronic Engineering Huainan Normal University, Huainan 232038, China
|
|
Cite this article: |
Bowen Zheng, Tao Chen, Hairui Sun et al 2024 Chin. Phys. Lett. 41 057301 |
|
|
Abstract As a sister compound of PbTe, SnTe possesses the environmentally friendly elements. However, the pristine SnTe compounds suffer from the high carrier concentration, the large valence band offset between the $L$ and $\varSigma $ positions and high thermal conductivity. Using high-pressure and high-temperature technology, we synthesized the pristine SnTe samples at different pressures and systemically investigated their thermoelectric properties. High pressure induces rich microstructures, including the high-density dislocations and lattice distortions, which serve as the strong phonon scattering centers, thereby reducing the lattice thermal conductivity. For the electrical properties, pressure reduces the harmful high carrier concentration, due to the depression of Sn vacancies. Moreover, pressure induces the valence band convergence, reducing the energy separation between the $L$ and $\varSigma $ positions. The band convergence and suppressed carrier concentration increase the Seebeck coefficient. Thus, the power factors of pressure-sintered compounds do not deteriorate significantly under the condition of decreasing electrical conductivity. Ultimately, for a pristine SnTe compound synthesized at 5 GPa, a higher $ZT$ value of 0.51 is achieved at 750 K, representing a 140% improvement compared to the value of 0.21 obtained using SPS. Therefore, the high-pressure and high-temperature technology is demonstrated as an effectively approach to optimize thermoelectric performance.
|
|
Received: 01 February 2024
Published: 03 May 2024
|
|
|
|
|
|
[1] | Li W, Xu T, Ma Z, Haruna A Y, Jiang Q H, Luo Y B, and Yang J Y 2021 Chin. Phys. Lett. 38 097201 |
[2] | Chen T, Qin X Y, Ming H W, Zhang X M, Wang Z Y, Yang S H, Zhang Y S, Ge Z H, Xin H X, Li D, and Zhang J 2023 Chem. Eng. J. 467 143397 |
[3] | Liu Z T, Hong T, Xu L Q, Wang S N, Gao X, Chang C, Ding X D, Xiao Y, and Zhao L D 2023 Interdiscip. Mater. 2 161 |
[4] | Zhu K, Deng B, Qian X, Wang Y, Li H, Jiang P, Yang R, and Liu W 2022 InfoMat 4 e12324 (in Chinese) |
[5] | Tang X, Li Z, Liu W, Zhang Q, and Uher C 2022 Interdiscip. Mater. 1 88 |
[6] | Wang T Y, Duan X L, Zhang H, Ma J L, Zhu H T, Qian X, Yang J Y, Liu T H, and Yang R G 2023 InfoMat 5 e12481 (in Chinese) |
[7] | Yang Q, Lyu T, Li Z, Mi H, Dong Y, Zheng H, Sun Z, Feng W, and Xu G 2021 J. Alloys Compd. 852 156989 |
[8] | Hussain T, Li X T, Danish M H, Rehman M U, Zhang J, Li D, Chen G, and Tang G D 2020 Nano Energy 73 104832 |
[9] | Tan G, Hao S, Cai S, Bailey T P, Luo Z, Hadar I, Uher C, Dravid V P, Wolverton C, and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 4480 |
[10] | Pei Y, Wang H, and Snyder G J 2012 Adv. Mater. 24 6125 |
[11] | Shakouri A, LaBounty C, Abraham P, Piprek J, and Bowers J E 1999 MRS Online Proc. Libr. 545 449 |
[12] | Li J, Zhang X Y, Lin S Q, Chen Z W, and Pei Y Z 2017 Chem. Mater. 29 605 |
[13] | Fu T Z, Xin J Z, Zhu T J, Shen J J, Fang T, and Zhao X B 2019 Sci. Bull. 64 1024 |
[14] | Liu Z H, Sato N, Gao W H, Yubuta K, Kawamoto N, Mitome M, Kurashima K, Owada Y, Nagase K, Lee C H, Yi J, Tsuchiya K, and Mori T 2021 Joule 5 1196 |
[15] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G 2012 Nature 489 414 |
[16] | Poudel B, Hao Q, Ma Y et al. 2008 Science 320 634 |
[17] | Fu L, Yin M, Wu D, Li W, Feng D, Huang L, and He J 2017 Energy & Environ. Sci. 10 2030 |
[18] | Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2014 Nature 508 373 |
[19] | Morelli D T, Jovovic V, and Heremans J P 2008 Phys. Rev. Lett. 101 035901 |
[20] | Muchtar A R, Srinivasan B, Tonquesse S L, Singh S, Soelami N, Yuliarto B, Berthebaud D, and Mori T 2021 Adv. Energy Mater. 11 2101122 |
[21] | Yang D, Yao W, Yan Y, Qiu W, Guo L, Lu X, Uher C, Han X, Wang G, Yang T, and Zhou X 2017 NPG Asia Mater. 9 e387 |
[22] | Li Y, Sun S, He Y, and Li H 2022 Chin. Phys. Lett. 39 026101 |
[23] | Fan C, Liu S, Liu J, Wu B, Tang Q, Tao Y, Pu M, Zhang F, Li J, Wang X, He D, Zhou C, and Lei L 2022 Chin. Phys. Lett. 39 026401 |
[24] | He X, Zhang C L, Li Z W, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y, Wang X C, Feng S M, Song J, Wang L H, Prakapenka V B, Chariton S, Liu H Z, and Jin C Q 2023 Chin. Phys. Lett. 40 057404 |
[25] | Zhang Y, Hao X, Huang Y, Tian F, Li D, Wang Y, Song H, and Duan D 2021 Chin. Phys. Lett. 38 026101 |
[26] | Liu C, Wang J, Deng X, Wang X, Pickard C J, Helled R, Wu Z, Wang H T, Xing D, and Sun J 2022 Chin. Phys. Lett. 39 076101 |
[27] | Wang Y, Yao M, Hua X, Jin F, Yao Z, Yang H, Liu Z, Li Q, Liu R, Liu B, Jiang L, and Liu B 2022 Chin. Phys. Lett. 39 056101 |
[28] | Zhu P W, Jia X, Chen H Y, Chen L X, Guo W L, Mei D L, Liu B B, Ma H A, Ren G Z, and Zou G T 2002 Chem. Phys. Lett. 359 89 |
[29] | Yang M, Sun H, Zhou X, Chen X, Su T, and Liu X 2022 J. Alloys Compd. 910 164827 |
[30] | Wu D, Zhao L D, Tong X, Li W, Wu L J, Tan Q, Pei Y L, Huang L, Li J F, Zhu Y M, Kanatzidis M G, and He J Q 2015 Energy & Environ. Sci. 8 2056 |
[31] | Banik A and Biswas K 2014 J. Mater. Chem. A 2 9620 |
[32] | Zhang X M, Wang Z Y, Zou B, Brod M K, Zhu J B, Jia T T, Tang G D, Snyder G J, and Zhang Y S 2021 Chem. Mater. 33 9624 |
[33] | He J, Tan X J, Xu J T, Liu G Q, Shao H Z, Fu Y J, Wang X, Liu Z, Xu J Q, Jiang H C, and Jiang J 2015 J. Mater. Chem. A 3 19974 |
[34] | Ortiz B R, Adamczyk J M, Gordiz K, Braden T, and Toberer E S 2019 Mol. Syst. Des. Eng. 4 407 |
[35] | Rogers L M 1968 J. Phys. D 1 1067 |
[36] | Zhao L D, Wu H J, Hao S Q, Wu C I, Zhou X Y, Biswas K, He J Q, Hogan T P, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2013 Energy & Environ. Sci. 6 3346 |
[37] | Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z, Chang Y, and Pei Y 2017 Adv. Mater. 29 1605887 |
[38] | Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261 |
[39] | Tan G J, Zhao L D, Shi F Y, Doak J W, Lo S H, Sun H, Wolverton C, Dravid V P, Uher C, and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006 |
[40] | Liu Y Q, Zhang X M, Nan P F, Zou B, Zhang Q T, Hou Y X, Li S, Gong Y R, Liu Q F, Ge B H, Cojocaru-Mirédin O, Yu Y, Zhang Y S, Chen G, Wuttig M, and Tang G D 2022 Adv. Funct. Mater. 32 2209980 |
[41] | Zhou D, Li Q, Ma Y, Cui Q, and Chen C 2013 J. Phys. Chem. C 117 5352 |
[42] | Zhou D, Li Q, Ma Y, Cui Q, and Chen C 2013 J. Phys. Chem. C 117 8437 |
[43] | Guo F, Zhu J, Cui B, Sun Y, Zhang X, Cai W, and Sui J 2022 Acta Mater. 231 117922 |
[44] | Aminzare M, Tseng Y C, Ramakrishnan A, Chen K H, and Mozharivskyj Y 2019 Sustainable Energy Fuels 3 251 |
[45] | Tan X, Tan X, Liu G, Xu J, Shao H, Hu H, Jin M, Jiang H, and Jiang J 2017 J. Mater. Chem. C 5 7504 |
[46] | Mukherjee S, Cohen R E, and Gülseren O 2003 J. Phys.: Condens. Matter 15 855 |
[47] | Ouyang G, Zhu W G, Yang G W, and Zhu Z M 2010 J. Phys. Chem. C 114 4929 |
[48] | Pei Y, Zheng L, Li W, Lin S, Chen Z, Wang Y, Xu X, Yu H, Chen Y, and Ge B 2016 Adv. Electron. Mater. 2 1600019 |
[49] | Ioffe A F, Stil'bans L S, Iordanishvili E K, Stavitskaya T S, Gelbtuch A, and Vineyard G 1959 Phys. Today 12 42 |
[50] | Brebrick R F and Strauss A J 1963 Phys. Rev. 131 104 |
[51] | Pei Y Z, LaLonde A, Iwanaga S, and Snyder G J 2011 Energy & Environ. Sci. 4 2085 |
[52] | Tan G J, Shi F Y, Doak J W, Sun H, Zhao L D, Wang P L, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2015 Energy & Environ. Sci. 8 267 |
[53] | Kim H S, Gibbs Z M, Tang Y, Wang H, and Snyder G J 2015 APL Mater. 3 041506 |
[54] | Zhu H, Li Z, Zhao C X, Li X X, Yang J L, Xiao C, and Xie Y 2021 Natl. Sci. Rev. 8 nwaa085 |
[55] | Tan G J, Shi F Y, Hao S Q, Chi H, Bailey T P, Zhao L D, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507 |
[56] | Tan G, Shi F, Hao S, Chi H, Zhao L D, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 5100 |
[57] | Wu G, Guo Z, Tan X J, Wang R Y, Zhang Q, Hu H Y, Sun P, Wu J H, Liu G Q, and Jiang J 2023 J. Mater. Chem. A 11 649 |
[58] | Al Rahal Al Orabi R, Mecholsky N A, Hwang J, Kim W, Rhyee J S, Wee D, and Fornari M 2016 Chem. Mater. 28 376 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|