CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ultrafast Carrier Dynamics in Ba$_{6}$Cr$_{2}$S$_{10}$ Modified by Toroidal Magnetic Phase Transition |
Litong Jiang1, C. Y. Jiang1,3, Y. C. Tian1,2, H. Zhao1,2, J. Zhang1, Z. Y. Tian1,4, S. H. Fu1, E. J. Liang4, X. C. Wang1,2, Changqing Jin1,2,5, and Jimin Zhao1,2,5* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Strong-Field and Ultrafast Photonics Lab, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China 4School of Physics & Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Litong Jiang, C. Y. Jiang, Y. C. Tian et al 2024 Chin. Phys. Lett. 41 047802 |
|
|
Abstract Ba$_{6}$Cr$_{2}$S$_{10}$ is a recently discovered magnetic material, in which the spins are aligned ferromagnetically in the ab-plane and anti-parallelly in a paired form along the $c$-axis. It is characterized as a quasi-one dimensional (1D) dimerized structure with a ferrotoroidic order, forming the simplest candidate toroidal magnetic (TM) order and exhibiting an anti-ferromagnetic-like transition at around 10 K. Time-resolved ultrafast dynamics investigation of the novel A–Cr–S (A: metal elements) family of quantum materials has rarely been reported. Here, we investigate the time-resolved pump-probe ultrafast dynamics of a Ba$_{6}$Cr$_{2}$S$_{10}$ single crystal. A prominent change in the photo-excited carrier dynamics is observed at $T_{\rm c}=10$ K, corresponding to the reported TM-paramagnetic phase transition. A potential unknown magnetic transition is also found at $T^{*}=29$ K. Our results provide new evidence for the TM magnetic transition in Ba$_{6}$Cr$_{2}$S$_{10}$, and shed light on phase transitions in TM quantum materials.
|
|
Received: 05 January 2024
Published: 25 April 2024
|
|
|
|
|
|
[1] | Fukuoka H, Miyaki Y, and Yamanaka S 2007 Bull. Chem. Soc. Jpn. 80 2170 |
[2] | Zhang J, Wang X C, Zhou L, Liu G X, Adroja D T, da Silva I, Demmel F, Khalyavin D, Sannigrahi J, Nair H S, Duan L, Zhao J F, Deng Z, Yu R Z, Shen X, Yu R C, Zhao H, Zhao J M, Long Y W, Hu Z W, Lin H J, Chan T S, Chen C T, Wu W, and Jin C Q 2022 Adv. Mater. 34 2106728 |
[3] | Fukuoka H, Miyaki Y, and Yamanaka S 2003 J. Solid State Chem. 176 206 |
[4] | Wu Y L, Yin X, Hasaien J Z L, Tian Z Y, Ding Y, and Zhao J M 2021 Rev. Sci. Instrum. 92 113002 |
[5] | Wu Y L, Yin X, Hasaien J, Ding Y, and Zhao J M 2020 Chin. Phys. Lett. 37 047801 |
[6] | Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, and Zhao J M 2016 Phys. Rev. Lett. 116 107001 |
[7] | Giannetti C, Capone M, Fausti D, Fabrizio M, Parmigiani F, and Mihailovic D 2016 Adv. Phys. 65 58 |
[8] | Crooker S A 2002 Rev. Sci. Instrum. 73 3258 |
[9] | Rice W D, Liu W, Baker T A, Sinitsyn N A, Klimov V I, and Crooker S A 2016 Nat. Nanotechnol. 11 137 |
[10] | Wang R, Wang T, Zhou Y, Wu Y L, Zhang X X, He X Y, Peng H L, Zhao J M, and Qiu X H 2019 2D Mater. 6 035034 |
[11] | Toda Y, Kawanokami F, Kurosawa T, Oda M, Madan I, Mertelj T, Kabanov V V, and Mihailovic D 2014 Phys. Rev. B 90 094513 |
[12] | Kabanov V V, Demsar J, Podobnik B, and Mihailovic D 1999 Phys. Rev. B 59 1497 |
[13] | Cao N, Wei Y F, Zhao J M, Zhao S P, Yang Q S, Zhang Z G, and Fu P M 2008 Chin. Phys. Lett. 25 2257 |
[14] | Cao N, Long Y B, Zhang Z G, Yuan J, Gao L J, Zhao B R, Zhao S P, Yang Q S, Zhao J M, and Fu P M 2008 Physica C 468 894 |
[15] | Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X, and Zhao J M 2020 Chin. Phys. Lett. 37 097802 |
[16] | Luo C W, Wu I H, Cheng P C, Lin J Y, Wu K H, Uen T M, Juang J Y, Kobayashi T, Chareev D A, Volkova O S, and Vasiliev A N 2012 Phys. Rev. Lett. 108 257006 |
[17] | Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L, and Taylor A J 2010 Phys. Rev. Lett. 104 027003 |
[18] | Wang M C, Qiao S, Jiang Z, Luo S N, and Qi J 2016 Phys. Rev. Lett. 116 036601 |
[19] | Sun F, Zhang T, Yi C J, Wu Y L, Zhao H, Wu Q, Shi Y G, Weng H M, and Zhao J M 2021 Phys. Rev. B 104 L100301 |
[20] | Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P, and Zhao J M 2017 Phys. Rev. B 95 235108 |
[21] | Wu Q, Sun F, Zhang Q Y, Zhao L X, Chen G F, and Zhao J M 2020 Phys. Rev. Mater. 4 064201 |
[22] | Yu B H, Tian Z Y, Sun F, Peets D C, Bai X D, Feng D L, and Zhao J M 2020 Opt. Express 28 15855 |
[23] | Zhao J M, Bragas A V, Lockwood D J, and Merlin R 2004 Phys. Rev. Lett. 93 107203 |
[24] | Zhao J M, Bragas A V, Merlin R, and Lockwood D J 2006 Phys. Rev. B 73 184434 |
[25] | Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, and Zhao J M 2023 Adv. Mater. 35 2208362 |
[26] | Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, and Zhu Y M 2023 Appl. Phys. Lett. 122 111104 |
[27] | Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X H, and Zhao J M 2023 submitted |
[28] | Han X F, Weng Y X, Wang R, Chen X H, Luo K H, Wu L A, and Zhao J M 2008 Appl. Phys. Lett. 92 151109 |
[29] | Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G, and Zhao J M 2019 Phys. Rev. B 99 094307 |
[30] | Morandi O, Hervieux P A, and Manfredi G 2009 Eur. Phys. J. D 52 155 |
[31] | Smith D C, Gay P, Stevens C J, Chen C, Yang G, Abell S J, Wang D Z, Wang J H, Ren Z F, and Ryan J F 2000 Physica C 341 2221 |
[32] | Matsuda T, Nishibayashi K, and Munekata H 2014 Proc. SPIE 9167 Spintronics VII 91670M |
[33] | Tian Z Y, Zhang Q Y, Xiao Y W, Gamage G A, Tian F, Yue S, Hadjiev V G, Bao J M, Ren Z F, Liang E J, and Zhao J M 2022 Phys. Rev. B 105 174306 |
[34] | Wang R, Zhou J B, Wang X S, Xie L M, Zhao J M, and Qiu X H 2021 Nano Res. 14 1162 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|