Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047803    DOI: 10.1088/0256-307X/41/4/047803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Driven Energy Band Gap Narrowing of $\lambda$-N$_{{2}}$
Yue Li1, Jingyi Liu1, Binbin Wu1, Yu Tao1, Yanlei Geng2, Xiaoli Wang2*, and Li Lei1*
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
2School of Physics and Electronic Information, Yantai University, Yantai 264005, China
Cite this article:   
Yue Li, Jingyi Liu, Binbin Wu et al  2024 Chin. Phys. Lett. 41 047803
Download: PDF(1256KB)   PDF(mobile)(1295KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Probing the energy band gap of solid nitrogen at high pressures is of importance for understanding pressure-driven changes in electronic structures and insulator-to-metal transitions under high pressure. The $\lambda $-N$_{2}$ formed by cold compression is known to be the most stable one in all solid nitrogen phases observed so far. By optimizing the optical system, we successfully measured the high-pressure absorption spectra of $\lambda $-N$_{2}$ covering the polymeric-nitrogen synthetic pressures (124 GPa–165 GPa). The measured optical band gap decreases with increasing pressure, from 2.23 eV at 124 GPa to 1.55 eV at 165 GPa, with a negative pressure coefficient of $-18.4$ meV/GPa, which is consistent with the result from our ab initio total-energy calculations ($-22.6 $ meV/GPa). The extrapolative metallization pressure for the $\lambda $-N$_{2}$ is around 288(18) GPa, which is close to the metallization pressure (280 GPa) for the $\eta $-N$_{2}$ expected by previous absorption edge and direct electrical measurements. Our results provide a direct spectroscopic evidence for the pressure-driven band gap narrowing of solid nitrogen.
Received: 22 January 2024      Editors' Suggestion Published: 22 April 2024
PACS:  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  78.30.-j (Infrared and Raman spectra)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047803       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue Li
Jingyi Liu
Binbin Wu
Yu Tao
Yanlei Geng
Xiaoli Wang
and Li Lei
[1] Ginzburg V L 1999 Phys.-Usp. 42 353
[2] Herzfeld K F 1927 Phys. Rev. 29 701
[3] Fcdwards P P and Sienko M J 1983 Int. Rev. Phys. Chem. 3 83
[4] Zhang L J et al. 2017 Nat. Rev. Mater. 2 17005
[5] Liu Y and Tuckerman M E 2001 J. Phys. Chem. B 105 6598
[6] Fortes A D et al. 2003 J. Chem. Phys. 118 5987
[7] Howie R T et al. 2012 Phys. Rev. Lett. 108 125501
[8] Gregoryanz E et al. 2001 Phys. Rev. B 64 052103
[9] Mao H K et al. 1990 Phys. Rev. Lett. 65 484
[10] Eremets M I et al. 2019 Nat. Phys. 15 1246
[11] Li B et al. 2021 Phys. Rev. Lett. 126 036402
[12] Loubeyre P, Occelli F, and Dumas P 2020 Nature 577 631
[13] Jiang S Q et al. 2018 Nat. Commun. 9 2624
[14] Goncharov A F et al. 2000 Phys. Rev. Lett. 85 1262
[15] Eremets M I et al. 2001 Nature 411 170
[16] Reichlin R et al. 1985 Phys. Rev. Lett. 55 1464
[17] Lei L et al. 2023 Energ. Mater. Front. 4 158
[18] Eremets M I et al. 2004 Nat. Mater. 3 558
[19] Lipp M J et al. 2007 Phys. Rev. B 76 014113
[20] Eremets M I et al. 2007 Appl. Phys. Lett. 90 171904
[21] Pu M F et al. 2019 Solid State Commun. 298 113645
[22] Tomasino D et al. 2014 Phys. Rev. Lett. 113 205502
[23] Laniel D et al. 2019 Phys. Rev. Lett. 122 066001
[24] Lei L et al. 2020 Chin. Phys. Lett. 37 068101
[25] Laniel D et al. 2020 Phys. Rev. Lett. 124 216001
[26] Ji C et al. 2020 Sci. Adv. 6 aba9206
[27] Frost M et al. 2016 Phys. Rev. B 93 024113
[28] Fan C M et al. 2022 Chin. Phys. Lett. 39 026401
[29] Liu S et al. 2020 Solid State Commun. 310 113843
[30] Sontising W and Beran G J O 2019 Phys. Rev. Mater. 3 095002
[31] Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516
[32] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Perdew J P, Burke K, and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[35] Patton D C and Pederson M R 1997 Phys. Rev. A 56 R2495
[36] Yanai T, Tew D P, and Handy N C 2004 Chem. Phys. Lett. 393 51
[37] Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[38] Heyd J, Scuseria G E, and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[39] Sun J W, Ruzsinszky A, and Perdew J P 2015 Phys. Rev. Lett. 115 036402
[40] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[41] Dalladay-Simpson P, Binns J, Peña-Alvarez M et al. 2019 Nat. Commun. 10 1134
[42] Davis E A and Mott N F 1970 Philos. Mag. 22 0903
[43] Chiarotti G 1972 Optical Properties of Solids. In: Hannay N B and Colombo U (eds) Electronic Materials (Boston, MA: Springer)
[44] Tauc J, Grigorovici R, and Vancu A 1966 Phys. Status Solidi B 15 627
[45] Eremets M I et al. 2004 J. Chem. Phys. 121 11296
[46] Wei S H and Zunger A 1999 Phys. Rev. B 60 5404
[47] Yakub L N 2016 Low Temp. Phys. 42 1
[48] Tao Y, Zhang L L, and Lei L 2022 Phys. Rev. B 105 174102
[49] Goncharov A F et al. 2013 Phys. Rev. B 87 024101
[50] Morales M A et al. 2013 Phys. Rev. B 87 184107
Related articles from Frontiers Journals
[1] Run Lv, Wenqian Tu, Dingfu Shao, Yuping Sun, and Wenjian Lu. Physical Origin of Color Changes in Lutetium Hydride under Pressure[J]. Chin. Phys. Lett., 2023, 40(11): 047803
[2] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 047803
[3] Yupeng Liu, Jinchun Shi, and Chongyang Chen. Temperature-Dependent Far-Infrared Absorption in Cyclotrimethylene Trinitramine Single Crystals Using Broadband Time-Domain Terahertz Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(1): 047803
[4] Peng Zhou, Gai-Ge Zheng, Yun-Yun Chen, Feng-Lin Xian, Lin-Hua Xu. Dynamically Tunable Perfect Absorbers Utilizing Hexagonal Aluminum Nano-Disk Array Cooperated with Vanadium Dioxide[J]. Chin. Phys. Lett., 2019, 36(1): 047803
[5] LI Ying-Ying, LIU Xiao-Li, YANG Da-Jie, HAO Zhong-Hua, WANG Qu-Quan. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells[J]. Chin. Phys. Lett., 2015, 32(02): 047803
[6] XIAO Zhi-Hui, WU Xiao-Ming, HUA Yu-Lin, WANG Li, BI Wen-Tao, BAI Juan-Juan, MU Xue, YIN Shou-Gen. Improvement of the Injection and Transport Characteristics of Electrons in Organic Light-Emitting Diodes by Utilizing a NaCl N-Doped Layer[J]. Chin. Phys. Lett., 2014, 31(04): 047803
[7] LI Ning, ZHU Wen-Huan, LIANG Qi, DING Guo-Hui. The Edge Magnetization and Strip Phase of Graphene Quantum Dots with Long-Range Coulomb Interaction[J]. Chin. Phys. Lett., 2014, 31(04): 047803
[8] PANG Li-Long, WANG Zhi-Guang, YAO Cun-Feng, ZANG Hang, LI Yuan-Fei, SUN Jian-Rong, SHEN Tie-Long, WEI Kong-Fang, ZHU Ya-Bin, SHENG Yan-Bin, CUI Ming-Huan, JIN Yun-Fan. The Structural Modification of LiTaO3 Crystal Induced by 100-keV H-ion Implantation[J]. Chin. Phys. Lett., 2012, 29(6): 047803
[9] CHE Lu, DING Yan-Jun, PENG Zhi-Min. The Influences of Temperature, Concentration and Pressure Uncertainties on the Measurement Results of Wavelength Modulation Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 047803
[10] NA Yuan-Yuan, WANG Cong, LIU Yu. The Influence of Au-Doping on Morphology and Visible-Light Reflectivity of TiN Thin Films Deposited by Direct-Current Reactive Magnetron Sputtering[J]. Chin. Phys. Lett., 2010, 27(5): 047803
[11] ZHU Shao-Peng, TANG Shao-Chun, MENG Xiang-Kang. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method[J]. Chin. Phys. Lett., 2009, 26(7): 047803
[12] Javed Ahmad, Hidetoshi Minami, Sher Alam, Jianding Yu, Yasutomo Arai, Hiromoto Uwe. Optical Transmittance and Band Gap of Ferroelectric BaTi2O5 Bulk Glass[J]. Chin. Phys. Lett., 2008, 25(12): 047803
[13] WANG Ming-Liang, LIU Ju-Zheng, XU Chun-Xiang. Intramolecular Charge Transfer in Arylpyrazolines[J]. Chin. Phys. Lett., 2006, 23(11): 047803
[14] LIU Xiao-Jun, MORITOMO Yutaka. Electronic State of Bismuth in BaBiO3 up to 9 GPa Investigated by Optical Spectroscopy[J]. Chin. Phys. Lett., 2003, 20(11): 047803
[15] GOU Quan-Bu, DONG Xiao-Li, LI Zu-Hao, ZHU Guo-Yi, HE Jing-Tang, TANG Xiao-Wei. Great Scintillating Properties of a YAP:Ce Crystal[J]. Chin. Phys. Lett., 2002, 19(7): 047803
Viewed
Full text


Abstract