CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pressure-Driven Energy Band Gap Narrowing of $\lambda$-N$_{{2}}$ |
Yue Li1, Jingyi Liu1, Binbin Wu1, Yu Tao1, Yanlei Geng2, Xiaoli Wang2*, and Li Lei1* |
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China 2School of Physics and Electronic Information, Yantai University, Yantai 264005, China
|
|
Cite this article: |
Yue Li, Jingyi Liu, Binbin Wu et al 2024 Chin. Phys. Lett. 41 047803 |
|
|
Abstract Probing the energy band gap of solid nitrogen at high pressures is of importance for understanding pressure-driven changes in electronic structures and insulator-to-metal transitions under high pressure. The $\lambda $-N$_{2}$ formed by cold compression is known to be the most stable one in all solid nitrogen phases observed so far. By optimizing the optical system, we successfully measured the high-pressure absorption spectra of $\lambda $-N$_{2}$ covering the polymeric-nitrogen synthetic pressures (124 GPa–165 GPa). The measured optical band gap decreases with increasing pressure, from 2.23 eV at 124 GPa to 1.55 eV at 165 GPa, with a negative pressure coefficient of $-18.4$ meV/GPa, which is consistent with the result from our ab initio total-energy calculations ($-22.6 $ meV/GPa). The extrapolative metallization pressure for the $\lambda $-N$_{2}$ is around 288(18) GPa, which is close to the metallization pressure (280 GPa) for the $\eta $-N$_{2}$ expected by previous absorption edge and direct electrical measurements. Our results provide a direct spectroscopic evidence for the pressure-driven band gap narrowing of solid nitrogen.
|
|
Received: 22 January 2024
Editors' Suggestion
Published: 22 April 2024
|
|
PACS: |
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
|
|
|
[1] | Ginzburg V L 1999 Phys.-Usp. 42 353 |
[2] | Herzfeld K F 1927 Phys. Rev. 29 701 |
[3] | Fcdwards P P and Sienko M J 1983 Int. Rev. Phys. Chem. 3 83 |
[4] | Zhang L J et al. 2017 Nat. Rev. Mater. 2 17005 |
[5] | Liu Y and Tuckerman M E 2001 J. Phys. Chem. B 105 6598 |
[6] | Fortes A D et al. 2003 J. Chem. Phys. 118 5987 |
[7] | Howie R T et al. 2012 Phys. Rev. Lett. 108 125501 |
[8] | Gregoryanz E et al. 2001 Phys. Rev. B 64 052103 |
[9] | Mao H K et al. 1990 Phys. Rev. Lett. 65 484 |
[10] | Eremets M I et al. 2019 Nat. Phys. 15 1246 |
[11] | Li B et al. 2021 Phys. Rev. Lett. 126 036402 |
[12] | Loubeyre P, Occelli F, and Dumas P 2020 Nature 577 631 |
[13] | Jiang S Q et al. 2018 Nat. Commun. 9 2624 |
[14] | Goncharov A F et al. 2000 Phys. Rev. Lett. 85 1262 |
[15] | Eremets M I et al. 2001 Nature 411 170 |
[16] | Reichlin R et al. 1985 Phys. Rev. Lett. 55 1464 |
[17] | Lei L et al. 2023 Energ. Mater. Front. 4 158 |
[18] | Eremets M I et al. 2004 Nat. Mater. 3 558 |
[19] | Lipp M J et al. 2007 Phys. Rev. B 76 014113 |
[20] | Eremets M I et al. 2007 Appl. Phys. Lett. 90 171904 |
[21] | Pu M F et al. 2019 Solid State Commun. 298 113645 |
[22] | Tomasino D et al. 2014 Phys. Rev. Lett. 113 205502 |
[23] | Laniel D et al. 2019 Phys. Rev. Lett. 122 066001 |
[24] | Lei L et al. 2020 Chin. Phys. Lett. 37 068101 |
[25] | Laniel D et al. 2020 Phys. Rev. Lett. 124 216001 |
[26] | Ji C et al. 2020 Sci. Adv. 6 aba9206 |
[27] | Frost M et al. 2016 Phys. Rev. B 93 024113 |
[28] | Fan C M et al. 2022 Chin. Phys. Lett. 39 026401 |
[29] | Liu S et al. 2020 Solid State Commun. 310 113843 |
[30] | Sontising W and Beran G J O 2019 Phys. Rev. Mater. 3 095002 |
[31] | Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516 |
[32] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[33] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[34] | Perdew J P, Burke K, and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396 |
[35] | Patton D C and Pederson M R 1997 Phys. Rev. A 56 R2495 |
[36] | Yanai T, Tew D P, and Handy N C 2004 Chem. Phys. Lett. 393 51 |
[37] | Heyd J, Scuseria G E, and Ernzerhof M 2003 J. Chem. Phys. 118 8207 |
[38] | Heyd J, Scuseria G E, and Ernzerhof M 2006 J. Chem. Phys. 124 219906 |
[39] | Sun J W, Ruzsinszky A, and Perdew J P 2015 Phys. Rev. Lett. 115 036402 |
[40] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[41] | Dalladay-Simpson P, Binns J, Peña-Alvarez M et al. 2019 Nat. Commun. 10 1134 |
[42] | Davis E A and Mott N F 1970 Philos. Mag. 22 0903 |
[43] | Chiarotti G 1972 Optical Properties of Solids. In: Hannay N B and Colombo U (eds) Electronic Materials (Boston, MA: Springer) |
[44] | Tauc J, Grigorovici R, and Vancu A 1966 Phys. Status Solidi B 15 627 |
[45] | Eremets M I et al. 2004 J. Chem. Phys. 121 11296 |
[46] | Wei S H and Zunger A 1999 Phys. Rev. B 60 5404 |
[47] | Yakub L N 2016 Low Temp. Phys. 42 1 |
[48] | Tao Y, Zhang L L, and Lei L 2022 Phys. Rev. B 105 174102 |
[49] | Goncharov A F et al. 2013 Phys. Rev. B 87 024101 |
[50] | Morales M A et al. 2013 Phys. Rev. B 87 184107 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|