Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047801    DOI: 10.1088/0256-307X/41/4/047801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magneto-optic Kerr Effect Measurement of TbMn$_{6}$Sn$_{6}$ at mK Temperature
Dai-Qiang Huang1†, Yang Wang2†, He Wang2*, Jian Wang1,3,4, and Yang Liu1*
1International Center for Quantum Materials, Peking University, Beijing 100871, China
2Department of Physics, Capital Normal University, Beijing 100048, China
3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
4Hefei National Laboratory, Hefei 230088, China
Cite this article:   
Dai-Qiang Huang, Yang Wang, He Wang et al  2024 Chin. Phys. Lett. 41 047801
Download: PDF(2926KB)   PDF(mobile)(2940KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Novel electron states stabilized by Coulomb interactions attract tremendous interests in condensed matter physics. These states are studied by corresponding phase transitions occurring at extreme conditions such as mK temperatures and high magnetic field. In this work, we introduce a magneto-optical Kerr effect measurement system to comprehensively explore these phases in addition to conventional transport measurement. This system, composed of an all-fiber zero-loop Sagnac interferometer and in situ piezo-scanner inside a dilution refrigerator, operates below 100 mK, with a maximum field of 12 Tesla and has a resolution as small as 0.2 µrad. As a demonstration, we investigate TbMn$_6{\rm Sn}_6$, where the manganese atoms form Kagome lattice that hosts topological non-trivial Dirac cones. We observed two types of Kerr signals, stemming from its fully polarized ferromagnetic ground state and positive charged carriers within the Dirac-like dispersion.
Received: 17 January 2024      Editors' Suggestion Published: 09 April 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047801       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dai-Qiang Huang
Yang Wang
He Wang
Jian Wang
and Yang Liu
[1] Xia J, Schemm E, Deutscher G, Kivelson S A, Bonn D A, Hardy W N, Liang R, Siemons W, Koster G, Fejer M M, and Kapitulnik A 2008 Phys. Rev. Lett. 100 127002
[2] Xia J, Siemons W, Koster G, Beasley M R, and Kapitulnik A 2009 Phys. Rev. B 79 140407
[3] Schemm E R, Gannon W J, Wishne C M, Halperin W P, and Kapitulnik A 2014 Science 345 190
[4] Thomas S, Kuiper B, Hu J, Smit J, Liao Z, Zhong Z, Rijnders G, Vailionis A, Wu R, Koster G, and Xia J 2017 Phys. Rev. Lett. 119 177203
[5] Sarkar T, Wei D S, Zhang J, Poniatowski N R, Mandal P R, Kapitulnik A, and Greene R L 2020 Science 368 532
[6] Pershan P S 1967 J. Appl. Phys. 38 1482
[7] Kapitulnik A 2015 Physica B 460 151
[8] Zhao L, Lin W, Chung Y J, Gupta A, Baldwin K W, Pfeiffer L N, and Liu Y 2023 Phys. Rev. Lett. 130 246401
[9] Sun H M, Liu Y Z, Huang D Q, Fu Y, Huang Y, He M Y, Luo X M, Song W J, Liu Y, Yu G Q, and He Q L 2023 Commun. Phys. 6 222
[10] Xia J, Maeno Y, Beyersdorf P T, Fejer M M, and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
[11] Fried A, Fejer M, and Kapitulnik A 2014 Rev. Sci. Instrum. 85 103707
[12] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Zahid Hasan M 2020 Nature 583 533
[13] Zhang H D, Koo J, Xu C Q, Sretenovic M, Yan B H, and Ke X L 2022 Nat. Commun. 13 1091
[14] Wang H, Liu Y Z, Gong M, Jiang H, Gao X Y, Ma W L, Luo J W, Ji H R, Ge J, Jia S, Gao P, Wang Z Q, Xie X C, and Wang J 2023 Nat. Commun. 14 6998
[15] Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802
[16] Cai G H, Jiang Y T, Zhou H, Yu Z, Jiang K, Shi Y G, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 117101
[17] Lee Y, Skomski R, Wang X, Orth P P, Ren Y, Kang B, Pathak A K, Kutepov A, Harmon B N, McQueeney R J, Mazin I I, and Ke L 2023 Phys. Rev. B 108 045132
[18] Li R S, Zhang T, Ma W L, Xu S X, Wu Q, Yue L, Zhang S J, Liu Q M, Wang Z X, Hu T C, Zhou X Y, Wu D, Dong T, Jia S, Weng H M, and Wang N L 2023 Phys. Rev. B 107 045115
[19] Xu X T, Yin J X, Ma W L, Tien H J, Qiang X B, Reddy P V S, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z, and Jia S 2022 Nat. Commun. 13 1197
[20] Hu J F, Wang K Y, Hu B P, Wang Y Z, Wang Z, Yang F, Tang N, Zhao R, and Qin W 1995 J. Phys.: Condens. Matter 7 889
[21] Zajkov N K, Mushnikov N V, Bartashevich M I, and Goto T 2000 J. Alloys Compd. 309 26
[22] Ma W L, Xu X T, Yin J X, Yang H, Zhou H B, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z, and Jia S 2021 Phys. Rev. Lett. 126 246602
[23] Riberolles S X M, Slade T J, Dally R L, Sarte P M, Li B, Han T, Lane H, Stock C, Bhandari H, Ghimire N J, Abernathy D L, Canfield P C, Lynn J W, Ueland B G, and McQueeney R J 2023 Nat. Commun. 14 2658
[24] Wenzel M, Tsirlin A A, Iakutkina O, Yin Q, Lei H C, Dressel M, and Uykur E 2022 Phys. Rev. B 106 L241108
[25] Riberolles S X M, Slade T J, Abernathy D L, Granroth G E, Li B, Lee Y, Canfield P C, Ueland B G, Ke L, and McQueeney R J 2022 Phys. Rev. X 12 021043
[26] Argyres P N 1955 Phys. Rev. 97 334
[27] Moss T S 1962 Phys. Status Solidi B 2 601
Related articles from Frontiers Journals
[1] Zhengping Yang, Wei-Ping Zhong, and Milivoj Belić. Dark Localized Waves in Shallow Waters: Analysis within an Extended Boussinesq System[J]. Chin. Phys. Lett., 2024, 41(4): 047801
[2] Zheng-Rong Liu, Rui Chen, and Bin Zhou. Tuning Second Chern Number in a Four-Dimensional Topological Insulator by High-Frequency Time-Periodic Driving[J]. Chin. Phys. Lett., 2024, 41(4): 047801
[3] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[4] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[5] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[6] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[7] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[8] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[9] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 047801
[10] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 047801
[11] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 047801
[12] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 047801
[13] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 047801
[14] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 047801
[15] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 047801
Viewed
Full text


Abstract