CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magneto-optic Kerr Effect Measurement of TbMn$_{6}$Sn$_{6}$ at mK Temperature |
Dai-Qiang Huang1†, Yang Wang2†, He Wang2*, Jian Wang1,3,4, and Yang Liu1* |
1International Center for Quantum Materials, Peking University, Beijing 100871, China 2Department of Physics, Capital Normal University, Beijing 100048, China 3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 4Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Dai-Qiang Huang, Yang Wang, He Wang et al 2024 Chin. Phys. Lett. 41 047801 |
|
|
Abstract Novel electron states stabilized by Coulomb interactions attract tremendous interests in condensed matter physics. These states are studied by corresponding phase transitions occurring at extreme conditions such as mK temperatures and high magnetic field. In this work, we introduce a magneto-optical Kerr effect measurement system to comprehensively explore these phases in addition to conventional transport measurement. This system, composed of an all-fiber zero-loop Sagnac interferometer and in situ piezo-scanner inside a dilution refrigerator, operates below 100 mK, with a maximum field of 12 Tesla and has a resolution as small as 0.2 µrad. As a demonstration, we investigate TbMn$_6{\rm Sn}_6$, where the manganese atoms form Kagome lattice that hosts topological non-trivial Dirac cones. We observed two types of Kerr signals, stemming from its fully polarized ferromagnetic ground state and positive charged carriers within the Dirac-like dispersion.
|
|
Received: 17 January 2024
Editors' Suggestion
Published: 09 April 2024
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
|
|
|
[1] | Xia J, Schemm E, Deutscher G, Kivelson S A, Bonn D A, Hardy W N, Liang R, Siemons W, Koster G, Fejer M M, and Kapitulnik A 2008 Phys. Rev. Lett. 100 127002 |
[2] | Xia J, Siemons W, Koster G, Beasley M R, and Kapitulnik A 2009 Phys. Rev. B 79 140407 |
[3] | Schemm E R, Gannon W J, Wishne C M, Halperin W P, and Kapitulnik A 2014 Science 345 190 |
[4] | Thomas S, Kuiper B, Hu J, Smit J, Liao Z, Zhong Z, Rijnders G, Vailionis A, Wu R, Koster G, and Xia J 2017 Phys. Rev. Lett. 119 177203 |
[5] | Sarkar T, Wei D S, Zhang J, Poniatowski N R, Mandal P R, Kapitulnik A, and Greene R L 2020 Science 368 532 |
[6] | Pershan P S 1967 J. Appl. Phys. 38 1482 |
[7] | Kapitulnik A 2015 Physica B 460 151 |
[8] | Zhao L, Lin W, Chung Y J, Gupta A, Baldwin K W, Pfeiffer L N, and Liu Y 2023 Phys. Rev. Lett. 130 246401 |
[9] | Sun H M, Liu Y Z, Huang D Q, Fu Y, Huang Y, He M Y, Luo X M, Song W J, Liu Y, Yu G Q, and He Q L 2023 Commun. Phys. 6 222 |
[10] | Xia J, Maeno Y, Beyersdorf P T, Fejer M M, and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002 |
[11] | Fried A, Fejer M, and Kapitulnik A 2014 Rev. Sci. Instrum. 85 103707 |
[12] | Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S, and Zahid Hasan M 2020 Nature 583 533 |
[13] | Zhang H D, Koo J, Xu C Q, Sretenovic M, Yan B H, and Ke X L 2022 Nat. Commun. 13 1091 |
[14] | Wang H, Liu Y Z, Gong M, Jiang H, Gao X Y, Ma W L, Luo J W, Ji H R, Ge J, Jia S, Gao P, Wang Z Q, Xie X C, and Wang J 2023 Nat. Commun. 14 6998 |
[15] | Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802 |
[16] | Cai G H, Jiang Y T, Zhou H, Yu Z, Jiang K, Shi Y G, Meng S, and Liu M 2023 Chin. Phys. Lett. 40 117101 |
[17] | Lee Y, Skomski R, Wang X, Orth P P, Ren Y, Kang B, Pathak A K, Kutepov A, Harmon B N, McQueeney R J, Mazin I I, and Ke L 2023 Phys. Rev. B 108 045132 |
[18] | Li R S, Zhang T, Ma W L, Xu S X, Wu Q, Yue L, Zhang S J, Liu Q M, Wang Z X, Hu T C, Zhou X Y, Wu D, Dong T, Jia S, Weng H M, and Wang N L 2023 Phys. Rev. B 107 045115 |
[19] | Xu X T, Yin J X, Ma W L, Tien H J, Qiang X B, Reddy P V S, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z, and Jia S 2022 Nat. Commun. 13 1197 |
[20] | Hu J F, Wang K Y, Hu B P, Wang Y Z, Wang Z, Yang F, Tang N, Zhao R, and Qin W 1995 J. Phys.: Condens. Matter 7 889 |
[21] | Zajkov N K, Mushnikov N V, Bartashevich M I, and Goto T 2000 J. Alloys Compd. 309 26 |
[22] | Ma W L, Xu X T, Yin J X, Yang H, Zhou H B, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z, and Jia S 2021 Phys. Rev. Lett. 126 246602 |
[23] | Riberolles S X M, Slade T J, Dally R L, Sarte P M, Li B, Han T, Lane H, Stock C, Bhandari H, Ghimire N J, Abernathy D L, Canfield P C, Lynn J W, Ueland B G, and McQueeney R J 2023 Nat. Commun. 14 2658 |
[24] | Wenzel M, Tsirlin A A, Iakutkina O, Yin Q, Lei H C, Dressel M, and Uykur E 2022 Phys. Rev. B 106 L241108 |
[25] | Riberolles S X M, Slade T J, Abernathy D L, Granroth G E, Li B, Lee Y, Canfield P C, Ueland B G, Ke L, and McQueeney R J 2022 Phys. Rev. X 12 021043 |
[26] | Argyres P N 1955 Phys. Rev. 97 334 |
[27] | Moss T S 1962 Phys. Status Solidi B 2 601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|