CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Theory for Charge Density Wave and Orbital-Flux State in Antiferromagnetic Kagome Metal FeGe |
Hai-Yang Ma1,2,3, Jia-Xin Yin4, M. Zahid Hasan4,5,6, and Jianpeng Liu1,2,7* |
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China 3Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China 4Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA 5Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA 6Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 7Liaoning Academy of Materials, Shenyang 110167, China
|
|
Cite this article: |
Hai-Yang Ma, Jia-Xin Yin, M. Zahid Hasan et al 2024 Chin. Phys. Lett. 41 047103 |
|
|
Abstract We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe. Based on first-principles density functional theory calculations, we study the electronic structures, Fermi-surface quantum fluctuations, as well as phonon properties of the antiferromagnetic kagome metal FeGe. It is found that charge density wave emerges in such a system due to a subtle cooperation between electron–electron interactions and electron–phonon couplings, which gives rise to an unusual scenario of interaction-triggered phonon instabilities, and eventually yields a charge density wave (CDW) state. We further show that, in the CDW phase, the ground-state current density distribution exhibits an intriguing star-of-David pattern, leading to flux density modulation. The orbital fluxes (or current loops) in this system emerge as a result of the subtle interplay between magnetism, lattice geometries, charge order, and spin-orbit coupling (SOC), which can be described by a simple, yet universal, tight-binding theory including a Kane–Mele-type SOC term and a magnetic exchange interaction. We further study the origin of the peculiar step-edge states in FeGe, which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material.
|
|
Received: 25 January 2024
Express Letter
Published: 01 April 2024
|
|
PACS: |
71.10.-w
|
(Theories and models of many-electron systems)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
|
|
|
[1] | Bergman D L, Wu C, and Balents L 2008 Phys. Rev. B 78 125104 |
[2] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 |
[3] | Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137 |
[4] | Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647 |
[5] | Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405 |
[6] | Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135 |
[7] | Yu S L and Li J X 2012 Phys. Rev. B 85 144402 |
[8] | Yin J X, Zhang S S, Li H et al. 2018 Nature 562 91 |
[9] | Ye L D, Kang M G, Liu J W et al. 2018 Nature 555 638 |
[10] | Liu E, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125 |
[11] | Yin J X, Ma W, Cochran T A et al. 2020 Nature 583 533 |
[12] | Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502 |
[13] | Xu G, Lian B, and Zhang S C 2015 Phys. Rev. Lett. 115 186802 |
[14] | Wu X, Schwemmer T, Müller T et al. 2021 Phys. Rev. Lett. 127 177001 |
[15] | Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384 |
[16] | Park T, Ye M, and Balents L 2021 Phys. Rev. B 104 035142 |
[17] | Ortiz B R, Teicher S M, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002 |
[18] | Jiang Y X, Yin J X, Denner M M et al. 2021 Nat. Mater. 20 1353 |
[19] | Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216 |
[20] | Chen H, Yang H, Hu B et al. 2021 Nature 599 222 |
[21] | Kang M G, Fang S, Kim J K et al. 2022 Nat. Phys. 18 301 |
[22] | Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con] |
[23] | Liu Z H, Zhao N N, Yin Q W et al. 2021 Phys. Rev. X 11 041010 |
[24] | Cho S, Ma H, Xia W et al. 2021 Phys. Rev. Lett. 127 236401 |
[25] | Nie L P, Sun K L, Ma W R et al. 2022 Nature 604 59 |
[26] | Mielke C, Das D, Yin J X et al. 2022 Nature 602 245 |
[27] | Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D, and Zeljkovic I 2022 Nat. Phys. 18 265 |
[28] | Shan Z Y, Biswas P K, Ghosh S K et al. 2022 Phys. Rev. Res. 4 033145 |
[29] | Liu J P, Park S Y, Garrity K F, and Vanderbilt D 2016 Phys. Rev. Lett. 117 257201 |
[30] | Liu J P and Dai X 2021 Nat. Rev. Phys. 3 367 |
[31] | Bourges P, Bounoua D, and Sidis Y 2021 C. R. Phys. 22 7 |
[32] | Denner M M, Thomale R, and Neupert T 2021 Phys. Rev. Lett. 127 217601 |
[33] | Ma H Y, Yin J X, Hasan M Z, and Liu J 2022 Phys. Rev. B 106 155125 |
[34] | Yin J X, Jiang Y X, Teng X et al. 2022 Phys. Rev. Lett. 129 166401 |
[35] | Teng X K, Chen L, Ye F et al. 2022 Nature 609 490 |
[36] | Teng X, Oh J S, Tan H X et al. 2023 Nat. Phys. 19 814 |
[37] | Miao H, Zhang T T, Li H X et al. 2023 Nat. Commun. 14 6183 |
[38] | Shao S, Yin J X, Belopolski I et al. 2023 ACS Nano 17 10164 |
[39] | Zhou H, Yan S, Fan D, Wang D, and Wan X 2023 Phys. Rev. B 108 035138 |
[40] | Wu L, Hu Y, Fan D, Wang D, and Wan X 2023 Chin. Phys. Lett. 40 117103 |
[41] | Bernhardt J, Lebech S B, and Beckman O 1984 J. Phys. F 14 2379 |
[42] | Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105 |
[43] | Giustino F 2017 Rev. Mod. Phys. 89 015003 |
[44] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|