Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047102    DOI: 10.1088/0256-307X/41/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning Second Chern Number in a Four-Dimensional Topological Insulator by High-Frequency Time-Periodic Driving
Zheng-Rong Liu1, Rui Chen1*, and Bin Zhou1,2*
1Department of Physics, Hubei University, Wuhan 430062, China
2Key Laboratory of Intelligent Sensing System and Security of Ministry of Education, Hubei University, Wuhan 430062, China
Cite this article:   
Zheng-Rong Liu, Rui Chen, and Bin Zhou 2024 Chin. Phys. Lett. 41 047102
Download: PDF(2357KB)   PDF(mobile)(3410KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions. We investigate the effects of high-frequency time-periodic driving in a four-dimensional (4D) topological insulator, focusing on topological phase transitions at the off-resonant quasienergy gap. The 4D topological insulator hosts gapless three-dimensional boundary states, characterized by the second Chern number $C_{2}$. We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving. This includes transitions from a topological phase with $C_{2}=\pm3$ to another topological phase with $C_{2}=\pm1$, or to a topological phase with an even second Chern number $C_{2}=\pm2$, which is absent in the 4D static system. Finally, the approximation theory in the high-frequency limit further confirms the numerical conclusions.
Received: 20 January 2024      Editors' Suggestion Published: 09 April 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047102       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng-Rong Liu
Rui Chen
and Bin Zhou
[1] Klitzing K V, Dorda G, and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Shen S Q 2017 Topological Insulators (Singapore: Springer)
[3] Wang C M, Sun H P, Lu H Z, and Xie X C 2017 Phys. Rev. Lett. 119 136806
[4] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, and Xiu F 2018 Nature 565 331
[5] Tang F D, Ren Y F, Wang P P, Zhong R D, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, and Zhang L 2019 Nature 569 537
[6] Chen R, Liu T, Wang C M, Lu H Z, and Xie X C 2021 Phys. Rev. Lett. 127 066801
[7] Qin F, Li S, Du Z Z, Wang C M, Zhang W, Yu D, Lu H Z, and Xie X C 2020 Phys. Rev. Lett. 125 206601
[8] Störmer H L, Eisenstein J P, Gossard A C, Wiegmann W, and Baldwin K 1986 Phys. Rev. Lett. 56 85
[9] Hannahs S T, Brooks J S, Kang W, Chiang L Y, and Chaikin P M 1989 Phys. Rev. Lett. 63 1988
[10] Montambaux G and Kohmoto M 1990 Phys. Rev. B 41 11417
[11] Kohmoto M, Halperin B I, and Wu Y S 1992 Phys. Rev. B 45 13488
[12] Hill S, Uji S, Takashita M, Terakura C, Terashima T, Aoki H, Brooks J S, Fisk Z, and Sarrao J 1998 Phys. Rev. B 58 10778
[13] Koshino M, Aoki H, Kuroki K, Kagoshima S, and Osada T 2001 Phys. Rev. Lett. 86 1062
[14] Bernevig B A, Hughes T L, Raghu S, and Arovas D P 2007 Phys. Rev. Lett. 99 146804
[15] Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, Nakao H, Murakami Y, Arima T H, Tokura Y, and Ishiwata S 2016 Sci. Adv. 2 e1501117
[16] Jin Y J, Wang R, Xia B W, Zheng B B, and Xu H 2018 Phys. Rev. B 98 081101
[17] Li H L, Liu H W, Jiang H, and Xie X C 2020 Phys. Rev. Lett. 125 036602
[18] Cheng S G, Jiang H, Sun Q F, and Xie X C 2020 Phys. Rev. B 102 075304
[19] Wang P, Ren Y, Tang F, Wang P P, Hou T, Zeng H L, Zhang L Y, and Qiao Z H 2020 Phys. Rev. B 101 161201
[20] Li S, Wang C M, Du Z Z, Qin F, Lu H Z, and Xie X C 2021 npj Quantum Mater. 6 96
[21] Zhang S C and Hu J 2001 Science 294 823
[22] Bernevig B A and Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press)
[23] Qi X L, Hughes T L, and Zhang S C 2008 Phys. Rev. B 78 195424
[24] Mochol-Grzelak M, Dauphin A, Celi A, and Lewenstein M 2018 Quantum Sci. Technol. 4 014009
[25] Sugawa S, Salces-Carcoba F, Perry A R, Yue Y, and Spielman I B 2018 Science 360 1429
[26] Zhang W X, Di F X, Zheng X G, Sun H J, and Zhang X D 2023 Nat. Commun. 14 1083
[27] Bouhon A, Zhu Y Q, Slager R J, and Palumbo G 2023 arXiv:2301.08827v1 [cond-mat.mes-hall]
[28] Li Y, Zhang S C, and Wu C 2013 Phys. Rev. Lett. 111 186803
[29] Zhu Y Q, Zheng Z, Palumbo G, and Wang Z D 2022 Phys. Rev. Lett. 129 196602
[30] Terrier F and Kunst F K 2020 Phys. Rev. Res. 2 023364
[31] Chen R, Yi X X, and Zhou B 2023 Phys. Rev. B 108 085306
[32] Price H M, Zilberberg O, Ozawa T, Carusotto I, and Goldman N 2015 Phys. Rev. Lett. 115 195303
[33] Ozawa T, Price H M, Goldman N, Zilberberg O, and Carusotto I 2016 Phys. Rev. A 93 043827
[34] Chen Z G, Zhu W, Tan Y, Wang L, and Ma G 2021 Phys. Rev. X 11 011016
[35] Chen X D, Shi F L, Liu J W, Shen K, He X T, Chan C T, Chen W J, and Dong J W 2022 Natl. Sci. Rev. 10 nwac289
[36] Kim K W, Bagrets D, Micklitz T, and Altland A 2023 Phys. Rev. X 13 011003
[37] Peng Y and Refael G 2018 Phys. Rev. B 97 134303
[38] Lohse M, Schweizer C, Price H M, Zilberberg O, and Bloch I 2018 Nature 553 55
[39] Zilberberg O, Huang S, Guglielmon J, Wang M, Chen K P, Kraus Y E, and Rechtsman M C 2018 Nature 553 59
[40] Kraus Y E, Ringel Z, and Zilberberg O 2013 Phys. Rev. Lett. 111 226401
[41] Edge J M, Tworzydło J, and Beenakker C W J 2012 Phys. Rev. Lett. 109 135701
[42] Lee C H, Wang Y, Chen Y, and Zhang X 2018 Phys. Rev. B 98 094434
[43] Petrides I, Price H M, and Zilberberg O 2018 Phys. Rev. B 98 125431
[44] Wang Y, Price H M, Zhang B, and Chong Y D 2020 Nat. Commun. 11 2356
[45] Yu R, Zhao Y X, and Schnyder A P 2020 Natl. Sci. Rev. 7 1288
[46] Chen A, Brand H, Helbig T, Hofmann T, Imhof S, Fritzsche A, KieBling T, Stegmaier A, Upreti L K, Neupert T, Bzdušek T, Greiter M, Thomale R, and Boettcher I 2023 Nat. Commun. 14 622
[47] Liu H, Lai P, Wang H, Cheng H, Tian J, and Chen S 2023 Nanophotonics 12 2273
[48] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[49] Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, and Liu E K 2020 Phys. Rev. Lett. 125 086602
[50] Wu H C, Jin L, and Song Z 2021 Phys. Rev. B 103 235110
[51] Ma Z, Liu Y, Xie Y X, and Wang Y S 2023 Phys. Rev. Appl. 19 054038
[52] Jin K H, Jiang W, Sethi G, and Liu F 2023 Nanoscale 15 12787
[53] Wu H C, Xu H S, Xie L C, and Jin L 2024 Phys. Rev. Lett. 132 083801
[54] Dahlhaus J P, Fregoso B M, and Moore J E 2015 Phys. Rev. Lett. 114 246802
[55] Kaladzhyan V, Simon P, and Trif M 2017 Phys. Rev. B 96 020507
[56] Sie E J, McIver J W, Lee Y H, Fu L, Kong J, and Gedik N 2015 Nat. Mater. 14 290
[57] Lindner N H, Refael G, and Galitski V 2011 Nat. Phys. 7 490
[58] Wang Y H, Steinberg H, Jarillo-Herrero P, and Gedik N 2013 Science 342 453
[59] Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A, and Gedik N 2016 Nat. Phys. 12 306
[60] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, and Cavalleri A 2019 Nat. Phys. 16 38
[61] Zhou S H, Bao C H, Fan B S, Zhou H, Gao Q X, Zhong H Y, Lin T Y, Liu H, Yu P, Tang P Z, Meng S, Duan W H, and Zhou S Y 2023 Nature 614 75
[62] He L, Addison Z, Jin J, Mele E J, Johnson S G, and Zhen B 2019 Nat. Commun. 10 4194
[63] Ito S, Schüler M, Meierhofer M, Schlauderer S, Freudenstein J, Reimann J, Afanasiev D, Kokh K A, Tereshchenko O E, Güdde J, Sentef M A, Höfer U, and Huber R 2023 Nature 616 696
[64] Katan Y T and Podolsky D 2013 Phys. Rev. Lett. 110 016802
[65] Sun X Q, Xiao M, Bzdušek T, Zhang S C, and Fan S 2018 Phys. Rev. Lett. 121 196401
[66] Lee C H, Ho W W, Yang B, Gong J, and Papić Z 2018 Phys. Rev. Lett. 121 237401
[67] Chen R, Zhou B, and Xu D H 2018 Phys. Rev. B 97 155152
[68] Chen R, Xu D H, and Zhou B 2018 Phys. Rev. B 98 235159
[69] Nakagawa M, Slager R J, Higashikawa S, and Oka T 2020 Phys. Rev. B 101 075108
[70] Zhan F Y, Ning Z, Gan L Y, Zheng B B, Fan J, and Wang R 2022 Phys. Rev. B 105 L081115
[71] Ning Z, Fu B, Xu D H, and Wang R 2022 Phys. Rev. B 105 L201114
[72] Jangjan M, Foa Torres L E F, and Hosseini M V 2022 Phys. Rev. B 106 224306
[73] Qin F, Lee C H, and Chen R 2022 Phys. Rev. B 106 235405
[74] Olin S and Lee W C 2023 Phys. Rev. B 107 094310
[75] Wang Z M, Wang R, Sun J H, Chen T Y, and Xu D H 2023 Phys. Rev. B 107 L121407
[76] Qin F, Lee C H, and Chen R 2023 Phys. Rev. B 108 075435
[77] Jangjan M and Hosseini M V 2020 Sci. Rep. 10 14256
[78] Jangjan M and Hosseini M V 2021 Sci. Rep. 11 12966
[79] Zhan F Y, Zeng J J, Chen Z, Jin X, Fan J, Chen T Y, and Wang R 2023 Nano Lett. 23 2166
[80] Kolodrubetz M H, Nathan F, Gazit S, Morimoto T, and Moore J E 2018 Phys. Rev. Lett. 120 150601
[81] Rudner M S, Lindner N H, Berg E, and Levin M 2013 Phys. Rev. X 3 031005
[82] Kitagawa T, Oka T, Brataas A, Fu L, and Demler E 2011 Phys. Rev. B 84 235108
[83] Oka T and Aoki H 2009 Phys. Rev. B 79 081406
[84] Kitagawa T, Berg E, Rudner M, and Demler E 2010 Phys. Rev. B 82 235114
[85] Gu Z, Fertig H A, Arovas D P, and Auerbach A 2011 Phys. Rev. Lett. 107 216601
[86] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196
[87] Cayssol J, Dóra B, Simon F, and Moessner R 2013 Phys. Status Solidi RRL 7 101
[88] Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229
[89] Perez-Piskunow P M, Usaj G, Balseiro C A, and Torres L E F F 2014 Phys. Rev. B 89 121401
[90] Usaj G, Perez-Piskunow P M, Foa Torres L E F, and Balseiro C A 2014 Phys. Rev. B 90 115423
[91] Kundu A, Fertig H A, and Seradjeh B 2014 Phys. Rev. Lett. 113 236803
[92] Foa Torres L E F, Perez-Piskunow P M, Balseiro C A, and Usaj G 2014 Phys. Rev. Lett. 113 266801
[93] Titum P, Lindner N H, Rechtsman M C, and Refael G 2015 Phys. Rev. Lett. 114 056801
[94] Wan X L, Ning Z, Xu D H, Zheng B B, and Wang R 2023 arXiv:2307.07116v2 [cond-mat.mes-hall]
[95] Maczewsky L J, Zeuner J M, Nolte S, and Szameit A 2017 Nat. Commun. 8 13756
[96] Cheng Q Q, Pan Y M, Wang H Q, Zhang C S, Yu D, Gover A, Zhang H, Li T, Zhou L, and Zhu S N 2019 Phys. Rev. Lett. 122 173901
[97] Pyrialakos G G, Apostolidis A, Khajavikhan M, Kantartzis N V, and Christodoulides D N 2023 Phys. Rev. B 107 174313
[98] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, and White A G 2012 Nat. Commun. 3 882
[99] Mukherjee S, Spracklen A, Valiente M, Andersson E, Öhberg P, Goldman N, and Thomson R R 2017 Nat. Commun. 8 13918
[100] Afzal S, Zimmerling T J, Ren Y, Perron D, and Van V 2020 Phys. Rev. Lett. 124 253601
[101] Maczewsky L J, Höckendorf B, Kremer M, Biesenthal T, Heinrich M, Alvermann A, Fehske H, and Szameit A 2020 Nat. Mater. 19 855
[102] Fleury R, Khanikaev A B, and Alú A 2016 Nat. Commun. 7 11744
[103] Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, and Zhu X F 2016 Nat. Commun. 7 13368
[104] Zhu W, Xue H, Gong J, Chong Y, and Zhang B 2022 Nat. Commun. 13 11
[105] Cheng Z, Bomantara R W, Xue H, Zhu W, Gong J, and Zhang B 2022 Phys. Rev. Lett. 129 254301
[106] Dabiri S S and Cheraghchi H 2023 J. Appl. Phys. 134 084303
[107] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237
[108] Asteria L, Tran D T, Ozawa T, Tarnowski M, Rem B S, Fläschner N, Sengstock K, Goldman N, and Weitenberg C 2019 Nat. Phys. 15 449
Related articles from Frontiers Journals
[1] Dai-Qiang Huang, Yang Wang, He Wang, Jian Wang, and Yang Liu. Magneto-optic Kerr Effect Measurement of TbMn$_{6}$Sn$_{6}$ at mK Temperature[J]. Chin. Phys. Lett., 2024, 41(4): 047102
[2] Zhengping Yang, Wei-Ping Zhong, and Milivoj Belić. Dark Localized Waves in Shallow Waters: Analysis within an Extended Boussinesq System[J]. Chin. Phys. Lett., 2024, 41(4): 047102
[3] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[4] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[5] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[6] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[7] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[8] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[9] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 047102
[10] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 047102
[11] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 047102
[12] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 047102
[13] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 047102
[14] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 047102
[15] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 047102
Viewed
Full text


Abstract