Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047103    DOI: 10.1088/0256-307X/41/4/047103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Theory for Charge Density Wave and Orbital-Flux State in Antiferromagnetic Kagome Metal FeGe
Hai-Yang Ma1,2,3, Jia-Xin Yin4, M. Zahid Hasan4,5,6, and Jianpeng Liu1,2,7*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
3Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
4Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
5Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
6Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
7Liaoning Academy of Materials, Shenyang 110167, China
Cite this article:   
Hai-Yang Ma, Jia-Xin Yin, M. Zahid Hasan et al  2024 Chin. Phys. Lett. 41 047103
Download: PDF(7149KB)   PDF(mobile)(8585KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe. Based on first-principles density functional theory calculations, we study the electronic structures, Fermi-surface quantum fluctuations, as well as phonon properties of the antiferromagnetic kagome metal FeGe. It is found that charge density wave emerges in such a system due to a subtle cooperation between electron–electron interactions and electron–phonon couplings, which gives rise to an unusual scenario of interaction-triggered phonon instabilities, and eventually yields a charge density wave (CDW) state. We further show that, in the CDW phase, the ground-state current density distribution exhibits an intriguing star-of-David pattern, leading to flux density modulation. The orbital fluxes (or current loops) in this system emerge as a result of the subtle interplay between magnetism, lattice geometries, charge order, and spin-orbit coupling (SOC), which can be described by a simple, yet universal, tight-binding theory including a Kane–Mele-type SOC term and a magnetic exchange interaction. We further study the origin of the peculiar step-edge states in FeGe, which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material.
Received: 25 January 2024      Express Letter Published: 01 April 2024
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.45.Lr (Charge-density-wave systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047103       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hai-Yang Ma
Jia-Xin Yin
M. Zahid Hasan
and Jianpeng Liu
[1] Bergman D L, Wu C, and Balents L 2008 Phys. Rev. B 78 125104
[2] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[3] Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137
[4] Yin J X, Lian B, and Hasan M Z 2022 Nature 612 647
[5] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[6] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135
[7] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[8] Yin J X, Zhang S S, Li H et al. 2018 Nature 562 91
[9] Ye L D, Kang M G, Liu J W et al. 2018 Nature 555 638
[10] Liu E, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125
[11] Yin J X, Ma W, Cochran T A et al. 2020 Nature 583 533
[12] Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502
[13] Xu G, Lian B, and Zhang S C 2015 Phys. Rev. Lett. 115 186802
[14] Wu X, Schwemmer T, Müller T et al. 2021 Phys. Rev. Lett. 127 177001
[15] Feng X L, Jiang K, Wang Z Q, and Hu J P 2021 Sci. Bull. 66 1384
[16] Park T, Ye M, and Balents L 2021 Phys. Rev. B 104 035142
[17] Ortiz B R, Teicher S M, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002
[18] Jiang Y X, Yin J X, Denner M M et al. 2021 Nat. Mater. 20 1353
[19] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 Nature 599 216
[20] Chen H, Yang H, Hu B et al. 2021 Nature 599 222
[21] Kang M G, Fang S, Kim J K et al. 2022 Nat. Phys. 18 301
[22] Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con]
[23] Liu Z H, Zhao N N, Yin Q W et al. 2021 Phys. Rev. X 11 041010
[24] Cho S, Ma H, Xia W et al. 2021 Phys. Rev. Lett. 127 236401
[25] Nie L P, Sun K L, Ma W R et al. 2022 Nature 604 59
[26] Mielke C, Das D, Yin J X et al. 2022 Nature 602 245
[27] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D, and Zeljkovic I 2022 Nat. Phys. 18 265
[28] Shan Z Y, Biswas P K, Ghosh S K et al. 2022 Phys. Rev. Res. 4 033145
[29] Liu J P, Park S Y, Garrity K F, and Vanderbilt D 2016 Phys. Rev. Lett. 117 257201
[30] Liu J P and Dai X 2021 Nat. Rev. Phys. 3 367
[31] Bourges P, Bounoua D, and Sidis Y 2021 C. R. Phys. 22 7
[32] Denner M M, Thomale R, and Neupert T 2021 Phys. Rev. Lett. 127 217601
[33] Ma H Y, Yin J X, Hasan M Z, and Liu J 2022 Phys. Rev. B 106 155125
[34] Yin J X, Jiang Y X, Teng X et al. 2022 Phys. Rev. Lett. 129 166401
[35] Teng X K, Chen L, Ye F et al. 2022 Nature 609 490
[36] Teng X, Oh J S, Tan H X et al. 2023 Nat. Phys. 19 814
[37] Miao H, Zhang T T, Li H X et al. 2023 Nat. Commun. 14 6183
[38] Shao S, Yin J X, Belopolski I et al. 2023 ACS Nano 17 10164
[39] Zhou H, Yan S, Fan D, Wang D, and Wan X 2023 Phys. Rev. B 108 035138
[40] Wu L, Hu Y, Fan D, Wang D, and Wan X 2023 Chin. Phys. Lett. 40 117103
[41] Bernhardt J, Lebech S B, and Beckman O 1984 J. Phys. F 14 2379
[42] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[43] Giustino F 2017 Rev. Mod. Phys. 89 015003
[44] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
Related articles from Frontiers Journals
[1] Yupei Zhang, Chongjie Mo, Ping Zhang, and Wei Kang. A Composite Ansatz for Calculation of Dynamical Structure Factor[J]. Chin. Phys. Lett., 2024, 41(1): 047103
[2] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 047103
[3] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 047103
[4] Yanting Li , Bixia Gao , Qiyu Wang , Juan Zhang , and Qiaoni Chen. Coexistence of Charge Order and Antiferromagnetic Order in an Extended Periodic Anderson Model[J]. Chin. Phys. Lett., 2021, 38(8): 047103
[5] Chuang Chen, Xiao Yan Xu, Yang Qi, Zi Yang Meng. Metal to Orthogonal Metal Transition[J]. Chin. Phys. Lett., 2020, 37(4): 047103
[6] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 047103
[7] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 047103
[8] Yuting Hu, Yidun Wan, Yong-Shi Wu. Boundary Hamiltonian Theory for Gapped Topological Orders[J]. Chin. Phys. Lett., 2017, 34(7): 047103
[9] XU Yuan-Hui, LIU Hui-Yun, HAO Xian-Feng, CHEN Rong-Na, GAO Fa-Ming. First Principles Study on Mechanical Properties of Superhard α-Ga Boron[J]. Chin. Phys. Lett., 2015, 32(02): 047103
[10] QIU Ping-Yi. First-principles Prediction for Mechanical and Optical Properties of Al3BC3[J]. Chin. Phys. Lett., 2014, 31(06): 047103
[11] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 047103
[12] YU Zhi-Ming, LIU Yu-Liang. A New Perspective to Study the Correlation Effect of the Three-Dimensional Electron Gas[J]. Chin. Phys. Lett., 2014, 31(1): 047103
[13] WU Li-Juan, ZHANG Wen-Tong, ZHANG Bo, LI Zhao-Ji. A Novel Silicon-on-Insulator Super-Junction Lateral-Double-Diffused Metal-Oxide-Semiconductor Transistor with T-Dual Dielectric Buried Layers[J]. Chin. Phys. Lett., 2013, 30(12): 047103
[14] LIU Yu-Liang. An Effective Description of Electron Correlation in the Green Function Approach[J]. Chin. Phys. Lett., 2013, 30(4): 047103
[15] YIN Hai-Tao, LÜ, Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer[J]. Chin. Phys. Lett., 2009, 26(4): 047103
Viewed
Full text


Abstract