CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Interstitial Doping of SnO$_{2}$ Film with Li for Indium-Free Transparent Conductor |
Xingqian Chen1,2,5, Haozhen Li1,2,5, Wei Chen2,4, Zengxia Mei1,2, Alexander Azarov3, Andrej Kuznetsov3, and Xiaolong Du1,2,4* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Songshan Lake Materials Laboratory, Dongguan 523808, China 3Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo, Norway 4Guangdong SinoPrime Technology Co., Ltd., Dongguan 523808, China 5School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Xingqian Chen, Haozhen Li, Wei Chen et al 2024 Chin. Phys. Lett. 41 037305 |
|
|
Abstract SnO$_{2}$ films exhibit significant potential as cost-effective and high electron mobility substitutes for In$_{2}$O$_{3}$ films. In this study, Li is incorporated into the interstitial site of the SnO$_{2}$ lattice resulting in an exceptionally low resistivity of $2.028 \times 10^{-3}\,\Omega \cdot$cm along with a high carrier concentration of $1.398 \times 10^{20}$ cm$^{-3}$ and carrier mobility of 22.02 cm$^{2}$/V$\cdot$s. Intriguingly, Li$_{i}$ readily forms in amorphous structures but faces challenges in crystalline formations. Furthermore, it has been experimentally confirmed that Li$_{i}$ acts as a shallow donor in SnO$_{2}$ with an ionization energy $\Delta E_{\rm D1}$ of $-0.4$ eV, indicating spontaneous occurrence of Li$_{i}$ ionization.
|
|
Received: 22 January 2024
Express Letter
Published: 15 March 2024
|
|
PACS: |
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
78.90.+t
|
(Other topics in optical properties, condensed matter spectroscopy and other interactions of particles and radiation with condensed matter)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
|
|
|
[1] | Yu C, Zou Q, Wang Q, Zhao Y, Ran X, Dong G, Peng C W, Allen V, Cao X, Zhou J, Zhao Y, and Zhang X 2023 Nat. Energy 8 1119 |
[2] | Zheng J, Ying Z, Yang Z, Lin Z, Wei H, Chen L, Yang X, Zheng Y, Li X, and Ye J 2023 Nat. Energy 8 1250 |
[3] | Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J, Wang D Z, Tian G Y, Zhang Y, Jia W, Song Y, Hu Y, Colwell J, Xing C, Ma Q, Wu H, Guo L, Dong G, Jiang H, Wu H, Wang X, Xu D, Li K, Peng J, Liu W, Chen D, Lennon A, Cao X, De Wolf S, Zhou J, Yang X, and Zhang X 2023 Nat. Energy 8 1375 |
[4] | Lin H, Yang M, Ru X N, Wang G S, Yin S, Peng F G, Hong C J, Qu M H, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, and Xu X 2023 Nat. Energy 8 789 |
[5] | Chen Z, Wang J, Wu H B, Yang J M, Wang Y K, Zhang J, Bao Q Y, Wang M, Ma Z F, Tress W, and Tang Z 2022 Nat. Commun. 13 4387 |
[6] | Shi J L, Zhang J Y, Yang L, Qu M, Qi D C, and Zhang K H L 2021 Adv. Mater. 33 2006230 |
[7] | Tung H T, Nguyen T P, Huu P D, and Le T 2021 Surf. Interfaces 23 100943 |
[8] | Zhu B L, Liu F, Li K, Lv K, Wu J, Gan Z H, Liu J, Zeng D W, and Xie C S 2017 Ceram. Int. 43 10288 |
[9] | Morán-Pedroso M, Gago R, Julin J, Salas-Colera E, Jimenez I, de Andrés A, and Prieto C 2021 Appl. Surf. Sci. 537 147906 |
[10] | Zhu B L, Zhao X, Hu W C, Li T T, Wu J, Gan Z H, Liu J, Zeng D W, and Xie C S 2017 J. Alloys Compd. 719 429 |
[11] | Wu F Y, Tong X R, Zhao Z, Gao J B, Zhou Y W, and Kelly P 2017 J. Alloys Compd. 695 765 |
[12] | Wang J C, Zhou W, and Wu P 2014 Appl. Surf. Sci. 314 188 |
[13] | Yousaf M U, Pervaiz E, Minallah S, Afzal M J, Honghong L, and Yang M 2019 Results Phys. 14 102455 |
[14] | Hernández-Gutiérrez C A, Vigil G O, Melo S, Rodriguez E, and Kudriavtsev Y 2019 Rev. Mex. Fís. 65 554 |
[15] | Medvedeva J E, Buchholz D B, and Chang R P H 2017 Adv. Electron. Mater. 3 1700082 |
[16] | Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, and Hosono H 2004 Nature 432 488 |
[17] | Guillén C and Herrero J 2007 J. Appl. Phys. 101 073514 |
[18] | Ramarajan R, Kovendhan M, Thangaraju K, Joseph D P, Babu R R, and Elumalai V 2020 J. Alloys Compd. 823 153709 |
[19] | Akgul F A, Gumus C, Er A O, Farha A H, Akgul G, Ufuktepe Y, and Liu Z 2013 J. Alloys Compd. 579 50 |
[20] | Zhang M, Xu M, Li M, Zhang Q, Lu Y, Chen J, Li M, Dai J, Chen C, and He Y 2017 Appl. Surf. Sci. 423 611 |
[21] | So H S, Park J W, Jung D H, Ko K H, and Lee H 2015 J. Appl. Phys. 118 085303 |
[22] | Patterson A L 1939 Phys. Rev. 56 978 |
[23] | Zhang G Z, Xie C S, Zhang S P, Zhang S S, and Xiong Y 2014 J. Phys. Chem. C 118 18097 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|