CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nontrivial Topological Phases in Ternary Borides M$_{2}$XB$_{2}$ (M = W, Mo; X = Co, Ni) |
Danwen Yuan1,2,3, Changming Yue4, Yuefang Hu1,2,3, and Wei Zhang1,2,3* |
1Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China 2Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China 3Academy of Carbon Neutrality of Fujian Normal University, Fuzhou 350007, China 4Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
|
|
Cite this article: |
Danwen Yuan, Changming Yue, Yuefang Hu et al 2024 Chin. Phys. Lett. 41 037304 |
|
|
Abstract The nontrivial band topologies protected by certain symmetries have attracted significant interest in condensed matter physics. The discoveries of nontrivial topological phases in real materials provide a series of archetype materials to further explore the topological physics. Ternary borides M$_{2}$XB$_{2}$ (M = W, Mo; X = Co, Ni) have been widely investigated as the wear-resistant and high-hardness materials. Based on first-principles calculations, we find the nontrivial topological properties in these materials. Taking W$_{2}$NiB$_{2}$ as an example, this material shows the nodal line semimetal state in the absence of spin-orbit coupling. Two types of nodal lines appear near the Fermi level simultaneously. One is protected by the combined space-inversion and time-reversal symmetry, and the other is by the mirror symmetry. Part of these two-type nodal lines form nodal chains. When spin-orbit coupling is included, these nodal lines are fully gapped and the system becomes a strong topological insulator with nontrivial $Z_{2}$ index (1;000). Our calculations demonstrate that a nontrivial spin-momentum locked surface Dirac cone appears on the $(\bar{{1}}10)$ surface. We also find that other isostructural ternary borides Mo$_{2}$NiB$_{2}$, Mo$_{2}$CoB$_{2}$, and W$_{2}$CoB$_{2}$ possess similar topological band structures. Therefore, our work not only enriches the understanding of band topology for ternary borides, but also lays the foundation for the further study of topological phases manipulation and potential spintronic applications in realistic materials.
|
|
Received: 12 January 2024
Published: 19 March 2024
|
|
PACS: |
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] | Weng H M, Dai X, and Fang Z 2014 MRS Bull. 39 849 |
[2] | Chiu C K, Schnyder A P, and Ryu S 2016 Rev. Mod. Phys. 88 035005 |
[3] | Bansil A, Lin H, and Das T 2016 Rev. Mod. Phys. 88 021004 |
[4] | Yu R, Zhang W, Zhang H J, Dai X, and Fang Z 2010 Science 329 61 |
[5] | Huang J R, Zhang T, Xu S, Rao Z C, Li J J, Liu J D, Gao S Y, Huang Y B, Zhu W L, Xia T L, Weng H M, and Qian T 2023 Chin. Phys. Lett. 40 047101 |
[6] | Zhang X, Lyu Z Z, Yang G, Li B, Hou Y L, Le T, Wang X, Wang A Q, Sun X P, Zhuo E N, Liu G T, Shen J, Qu F M, and Lu L 2022 Chin. Phys. Lett. 39 017401 |
[7] | Kong Z L, Lin Z K, and Jiang J H 2022 Chin. Phys. Lett. 39 084301 |
[8] | Weng H M, Dai X, and Fang Z 2016 J. Phys.: Condens. Matter 28 303001 |
[9] | Burkov A A 2016 Nat. Mater. 15 1145 |
[10] | Cui Z H, Qian Y T, Weng H M, and Fang Z 2020 Chin. Phys. Lett. 37 087103 |
[11] | Wang Y, Liu Y X, Hao Z Y, Cheng W J, Deng J Z, Wang Y X, Gu Y H, Ma X M, Rong H T, Zhang F Y, Guo S, Zhang C C, Jiang Z C, Yang Y C, Liu W L, Jiang Q, Liu Z T, Ye M, Shen D W, Liu Y, Cui S T, Wang L, Liu C, Lin J H, Liu Y, Cai Y Q, Zhu J L, Chen C Y, and Mei J W 2023 Chin. Phys. Lett. 40 037102 |
[12] | Zhang W, Wu Q S, Yazyev O V, Weng H M, Cheng W D, and Chai G L 2018 Phys. Rev. B 98 115411 |
[13] | Zhang W, Luo K F, Chen Z D, Zhu Z M, Fang C, and Weng H M 2019 npj Comput. Mater. 5 105 |
[14] | Yuan D W, Yang Y M, and Zhang W 2021 Chin. Phys. Lett. 38 117301 |
[15] | Xu S L, Hu Y F, Chen W, and Zhang W 2023 Acta Phys. Sin. 72 127102 (in Chinese) |
[16] | Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757 |
[17] | König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Qi X L, and Zhang S C 2007 Science 318 766 |
[18] | Dai X, Hughes T L, Fang Z, and Zhang S C 2008 Phys. Rev. B 77 125319 |
[19] | Zhang H J, Liu C X, Qi X L, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438 |
[20] | Zhang W, Yu R, Dai X, and Fang Z 2010 New J. Phys. 12 065013 |
[21] | Castro Neto A H, Guinea F, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109 |
[22] | Cahangirov S, Topsakal M, Sahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804 |
[23] | Xu Y, Yan B, Zhang H J, Wang J, Xu G, Duan W H, and Zhang S C 2013 Phys. Rev. Lett. 111 136804 |
[24] | Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Hersam M C, and Guisinger N P 2015 Science 350 1513 |
[25] | Das S, Zhang W, Demarteau M, Dubey M, and Roelofs A 2014 Nano Lett. 14 5733 |
[26] | Chen Z D, Zhu Z M, and Zhang W 2020 New J. Phys. 22 093055 |
[27] | Lin H, Wray L A, Xia Y Q, Xu S Y, Jia S, Bansil A, and Hasan M Z 2010 Nat. Mater. 9 546 |
[28] | Feng W X, Xiao D, and Yao Y G 2011 Phys. Rev. Lett. 106 016402 |
[29] | Zhang W, Yu R, Feng W X, Yao Y G, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808 |
[30] | Weng H M, Dai X, and Fang Z 2014 Phys. Rev. X 4 011002 |
[31] | Wu S F, Fatemi V, Gibson Q D, Watanabe K, Cava R J, and Jarillo-Herrero P 2018 Science 359 76 |
[32] | Young S M, Zaheer S, Teo J C Y, Mele E J, and Rappe A M 2012 Phys. Rev. Lett. 108 140405 |
[33] | Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Dai X, and Fang Z 2012 Phys. Rev. B 85 195320 |
[34] | Wang Z J, Weng H M, Dai X, and Fang Z 2013 Phys. Rev. B 88 125427 |
[35] | Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Cava R J, and Ong N P 2015 Science 350 413 |
[36] | Wan X G, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101 |
[37] | Xu G, Weng H M, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806 |
[38] | Weng H M, Fang C, Bernevig B A, and Dai X 2015 Phys. Rev. X 5 011029 |
[39] | Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412 |
[40] | Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Dai X, and Chen G F 2015 Phys. Rev. X 5 031023 |
[41] | Yu R, Fang Z, and Weng H M 2017 Phys. Rev. Lett. 119 036401 |
[42] | Hu Y F, Yue C M, Yuan D W, Gao J C, Huang Z G, Fang Z, Weng H M, and Zhang W 2022 Sci. Chin. Phys. Mech. & Astron. 65 297211 |
[43] | Fang C, Dai X, and Fang Z 2016 Chin. Phys. B 25 117106 |
[44] | Li S, Yu Z M, Liu Y, Guan S, Wang S S, Yao Y G, and Yang S A 2017 Phys. Rev. B 96 081106 |
[45] | Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Lin H, and Hasan M Z 2016 Nat. Commun. 7 10556 |
[46] | Yu R, Weng H M, Dai X, and Hu X 2015 Phys. Rev. Lett. 115 036807 |
[47] | Xu Q N, Yu R, Dai X, and Weng H M 2017 Phys. Rev. B 95 045136 |
[48] | Chang T R, Pletikosic I, Kong T, Bian G, Huang A, Denlinger J, Kushwaha S K, Sinkovic B, Jeng H T, Xie W, and Cava R J 2019 Adv. Sci. 6 1800897 |
[49] | Weng H M, Liang Y Y, Xu Q N, Yu R, Dai X, and Kawazoe Y 2015 Phys. Rev. B 92 045108 |
[50] | Rhim J W and Kim Y B 2015 Phys. Rev. B 92 045126 |
[51] | Huh Y J, Moon E G, and Kim Y B 2016 Phys. Rev. B 93 035138 |
[52] | Kopnin N B, Heikkilä T T, and Volovik G E 2011 Phys. Rev. B 83 220503 |
[53] | Esquinazi P and Lysogorskiy Y V 2016 Basic Physics of Functionalized Graphite (New York: Springer) p 97 |
[54] | Yang G Q, Yin H Q, Xu Z F, Zhang T, Yang J, Zheng Q J, and Qu X H 2019 J. Alloys Compd. 791 761 |
[55] | Shi Z S, Yin H Q, Xu Z F, Zhang T, Yang G Q, Zheng Q J, Rao R S, Yang J, Wu M, and Qu X H 2019 Intermetallics 114 106573 |
[56] | Takagi K 2001 Mater. Chem. Phys. 67 214 |
[57] | Takagi K 2006 J. Solid State Chem. 179 2809 |
[58] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[59] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[60] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[61] | Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 |
[62] | Souza I, Marzari N, and Vanderbilt D 2001 Phys. Rev. B 65 035109 |
[63] | Wu Q S, Zhang S N, Troyer M, and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[64] | Rieger W, Nowotny H, and Benesovsky F 1966 Monatsh. Chem. - Chem. Mon. 97 378 |
[65] | Kuz'Ma Y B and Chepiga M V 1969 Sov. Powder Metall. Met. Ceram. 8 832 |
[66] | Altmann S L and Herzig P 1994 Point-Group Theory Tables (New York: Oxford University Press) p 137 |
[67] | Shao D X, Guo Z P, Wu X X, Nie S M, Weng H M, and Wang Z J 2021 Phys. Rev. Res. 3 013278 |
[68] | Bu K, Wang J T, and Weng H M 2021 Phys. Rev. B 103 L081108 |
[69] | Fu L, Kane C L, and Mele E J 2007 Phys. Rev. Lett. 98 106803 |
[70] | Moore J E and Balents L 2007 Phys. Rev. B 75 121306 |
[71] | Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q, Weng H M, and Fang C 2019 Nature 566 475 |
[72] | Vergniory M G, Elcoro L, Felser C, Bernevig B A, and Wang Z J 2019 Nature 566 480 |
[73] | Tang F, Vishwanath A, and Wan X G 2019 Nature 566 486 |
[74] | Yu R, Qi X L, Fang Z, and Dai X 2011 Phys. Rev. B 84 075119 |
[75] | Fu L and Kane C L 2007 Phys. Rev. B 76 045302 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|