CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene |
Jiawei Hu1,2†, Shiyu Zhu1,2†*, Qianying Hu1,2†, Yunhao Wang1,2, Chengmin Shen1,2, Haitao Yang1,2, Xiaoshan Zhu1,2, Qing Huan1,2, Yang Xu1,2*, and Hong-Jun Gao1,2,3* |
1Beijing National Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Jiawei Hu, Shiyu Zhu, Qianying Hu et al 2024 Chin. Phys. Lett. 41 037401 |
|
|
Abstract Moiré superlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena, which are highly sensitive to twist angles, including both the global value and the spatial inhomogeneity. However, only a few methods provide spatial-resolved information for characterizing local twist angle distribution. Here we directly visualize the variations of local twist angles and angle-dependent evolutions of the quantum states in twisted bilayer graphene by scanning microwave impedance microscopy (sMIM). Spatially resolved sMIM measurements reveal a pronounced alteration in the local twist angle, approximately 0.3$^{\circ}$ over several micrometers in some cases. The variation occurs not only when crossing domain boundaries but also occasionally within individual domains. Additionally, the full-filling density of the flat band experiences a change of over $2 \times 10^{11}$ cm$^{-2}$ when crossing domain boundaries, aligning consistently with the twist angle inhomogeneity. Moreover, the correlated Chern insulators undergo variations in accordance with the twist angle, gradually weakening and eventually disappearing as the deviation from the magic angle increases. Our findings signify the crucial role of twist angles in shaping the distribution and existence of quantum states, establishing a foundational cornerstone for advancing the study of twisted two-dimensional materials.
|
|
Received: 26 February 2024
Express Letter
Published: 06 March 2024
|
|
PACS: |
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
|
|
|
[1] | Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N, and Rubio A 2021 Nat. Phys. 17 155 |
[2] | Balents L, Dean C R, Efetov D K, and Young A F 2020 Nat. Phys. 16 725 |
[3] | Mak K F, and Shan J 2022 Nat. Nanotechnol. 17 686 |
[4] | Park H, Cai J Q, Anderson E, Zhang Y N, Zhu J Y, Liu X Y, Wang C, Holtzmann W, Hu C, Liu Z, Taniguchi T, Watanabe K, Chu J H, Cao T, Fu L, Yao W, Chang C Z, Cobden D, Xiao D, and Xu X D 2023 Nature 622 74 |
[5] | Xu F, Sun Z, Jia T T, Liu C, Xu C, Li C S, Gu Y, Watanabe K, Taniguchi T, Tong B, Jia J, Shi Z W, Jiang S, Zhang Y, Liu X, and Li T X 2023 Phys. Rev. X 13 031037 |
[6] | Li X F, Sun R X, Wang S Y, Li X, Liu Z B, and Tian J G 2022 Chin. Phys. Lett. 39 037301 |
[7] | Ma J J, Wang Z Y, Xu S G, Gao Y X, Zhang Y Y, Dai Q, Lin X, Du S X, Ren J, and Gao H J 2022 Chin. Phys. Lett. 39 047403 |
[8] | Bistritzer R, and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 |
[9] | Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, and Jarillo-Herrero P 2021 Science 372 264 |
[10] | Li G H, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J, and Andrei E Y 2010 Nat. Phys. 6 109 |
[11] | Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, and Pasupathy A N 2019 Nature 572 95 |
[12] | Xie Y L, Lian B, Jäck B, Liu X M, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2019 Nature 572 101 |
[13] | Butz B, Dolle C, Niekiel F, Weber K, Waldmann D, Weber H B, Meyer B, and Spiecker E 2014 Nature 505 533 |
[14] | Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, and Zeldov E 2020 Nature 581 47 |
[15] | Grover S, Bocarsly M, Uri A, Stepanov P, Di Battista G, Roy I, Xiao J W, Meltzer A Y, Myasoedov Y, Pareek K, Watanabe K, Taniguchi T, Yan B, Stern A, Berg E, Efetov D K, and Zeldov E 2022 Nat. Phys. 18 885 |
[16] | Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, and Nadj-Perge S 2021 Nature 589 536 |
[17] | Turkel S, Swann J, Zhu Z Y, Christos M, Watanabe K, Taniguchi T, Sachdev S, Scheurer M S, Kaxiras E, Dean C R, and Pasupathy A N 2022 Science 376 193 |
[18] | Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, and Kim P 2019 Nat. Mater. 18 448 |
[19] | Wagner G, Kwan Y H, Bultinck N, Simon S H, and Parameswaran S A 2022 Phys. Rev. Lett. 128 156401 |
[20] | Pantaleón P A, Low T, and Guinea F 2021 Phys. Rev. B 103 205403 |
[21] | de Jong T A, Benschop T, Chen X, Krasovskii E E, de Dood M J A, Tromp R M, Allan M P, and van der Molen S J 2022 Nat. Commun. 13 70 |
[22] | Nakatsuji N, and Koshino M 2022 Phys. Rev. B 105 245408 |
[23] | Kwan Y H, Wagner G, Soejima T, Zaletel M P, Simon S H, Parameswaran S A, and Bultinck N 2021 Phys. Rev. X 11 041063 |
[24] | Kapfer M, Jessen B S, Eisele M E, Fu M, Danielsen D R, Darlington T P, Moore S L, Finney N R, Marchese A, Hsieh V, Majchrzak P, Jiang Z, Biswas D, Dudin P, Avila J, Watanabe K, Taniguchi T, Ulstrup S, Bøggild P, Schuck P J, Basov D N, Hone J, and Dean C R 2023 Science 381 677 |
[25] | Lau C N, Bockrath M W, Mak K F, and Zhang F 2022 Nature 602 41 |
[26] | Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, and Yacoby A 2021 Nature 600 439 |
[27] | Das I, Lu X B, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, and Efetov D K 2021 Nat. Phys. 17 710 |
[28] | Saito Y, Ge J Y, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, and Young A F 2021 Nat. Phys. 17 478 |
[29] | Wu S, Zhang Z Y, Watanabe K, Taniguchi T, and Andrei E Y 2021 Nat. Mater. 20 488 |
[30] | Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, and Dean C R 2013 Science 342 614 |
[31] | Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, and Tutuc E 2016 Nano Lett. 16 1989 |
[32] | Barber M E, Ma E Y, and Shen Z X 2021 Nat. Rev. Phys. 4 61 |
[33] | Ohlberg D A A, Tami D, Gadelha A C, Neto E G S, Santana F C, Miranda D, Avelino W, Watanabe K, Taniguchi T, Campos L C, Ramirez J C, do Rego C G, Jorio A, and Medeiros-Ribeiro G 2021 Nat. Commun. 12 2980 |
[34] | Huang X, Chen L X, Tang S J, Jiang C X, Chen C, Wang H S, Shen Z X, Wang H, and Cui Y T 2021 Nano Lett. 21 4292 |
[35] | Lee K, Utama M I B, Kahn S, Samudrala A, Leconte N, Yang B, Wang S, Watanabe K, Taniguchi T, Altoé M V P, Zhang G, Weber-Bargioni A, Crommie M, Ashby P D, Jung J, Wang F, and Zettl A 2020 Sci. Adv. 6 eabd1919 |
[36] | Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, and Kim P 2013 Nature 497 598 |
[37] | Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2020 Nature 588 610 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|