Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 037103    DOI: 10.1088/0256-307X/41/3/037103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States
Jianzhi Chen1, Aoqian Shi1, Yuchen Peng1, Peng Peng1, and Jianjun Liu1,2*
1Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
2Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
Cite this article:   
Jianzhi Chen, Aoqian Shi, Yuchen Peng et al  2024 Chin. Phys. Lett. 41 037103
Download: PDF(4600KB)   PDF(mobile)(4604KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hybrid skin-topological effect (HSTE) in non-Hermitian systems exhibits both the skin effect and topological protection, offering a novel mechanism for localization of topological edge states (TESs) in electrons, circuits, and photons. However, it remains unclear whether the HSTE can be realized in quasicrystals, and the unique structure of quasicrystals with multi-site cells may provide novel localization phenomena for TESs induced by the HSTE. We propose an eight-site cell in two-dimensional quasicrystals and realize the HSTE with eight-site nonreciprocal intracell hoppings. Furthermore, we can arbitrarily adjust the eigenfield distributions of the TESs and discover domain walls associated with effective dissipation and their correlation with localization. We present a new scheme to precisely adjust the energy distribution in non-Hermitian quasicrystals with arbitrary polygonal outer boundaries.
Received: 26 December 2023      Editors' Suggestion Published: 18 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/037103       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/037103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianzhi Chen
Aoqian Shi
Yuchen Peng
Peng Peng
and Jianjun Liu
[1] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[2] Kunst F K, Edvardsson E, Budich J C, and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[3] Yao S Y, Song F, and Wang Z 2018 Phys. Rev. Lett. 121 136802
[4] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[5] Kawabata K, Shiozaki K, Ueda M, and Sato M 2019 Phys. Rev. X 9 041015
[6] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801
[7] Zhang K, Yang Z, and Fang C 2020 Phys. Rev. Lett. 125 126402
[8] Song F, Yao S, and Wang Z 2019 Phys. Rev. Lett. 123 246801
[9] Tang L Z, Zhang L F, Zhang G Q, and Zhang D W 2020 Phys. Rev. A 101 063612
[10] Xue W T, Hu Y M, Song F, and Wang Z 2022 Phys. Rev. Lett. 128 120401
[11] Li L H, Lee C H, Mu S, and Gong J B 2020 Nat. Commun. 11 5491
[12] Kawabata K, Sato M, and Shiozaki K 2020 Phys. Rev. B 102 205118
[13] Cao P C, Peng Y G, Li Y, and Zhu X F 2022 Chin. Phys. Lett. 39 057801
[14] Zhang K, Yang Z, and Fang C 2022 Nat. Commun. 13 2496
[15] Huang Q K L, Liu Y K, Cao P C, Zhu X F, and Li Y 2023 Chin. Phys. Lett. 40 106601
[16] Kawabata K, Bessho T, and Sato M 2019 Phys. Rev. Lett. 123 066405
[17] Luo X W and Zhang C 2019 Phys. Rev. Lett. 123 073601
[18] Long Y, Xue H, and Zhang B 2022 Phys. Rev. B 105 L100102
[19] Kitaev A 2006 Ann. Phys. 321 2
[20] He A L, Ding L R, Zhou Y, Wang Y F, and Gong C D 2019 Phys. Rev. B 100 214109
[21] Urwyler D M, Lenggenhager P M, Boettcher I, Thomale R, Neupert T, and Bzdušek T 2022 Phys. Rev. Lett. 129 246402
[22] Huang H Q and Liu F 2018 Phys. Rev. Lett. 121 126401
[23] Huang H Q and Liu F 2018 Phys. Rev. B 98 125130
[24] Zeng Q B, Yang Y B, and Xu Y 2020 Phys. Rev. B 101 020201
[25] Chen R, Chen C Z, Gao J H, Zhou B, and Xu D H 2020 Phys. Rev. Lett. 124 036803
[26] Hua C B, Chen R, Zhou B, and Xu D H 2020 Phys. Rev. B 102 241102
[27] Liu H F, Zhou J K, Wu B L, Zhang Z Q, and Jiang H 2021 Phys. Rev. B 103 224203
[28] Li L H, Lee C H, and Gong J 2020 Phys. Rev. Lett. 124 250402
[29] Zou D Y, Chen T, He W J, Bao J C, Lee C H, Sun H J, and Zhang X D 2021 Nat. Commun. 12 7201
[30] Zhu X, Wang H, Gupta S K, Zhang H, Xie B, Lu M, and Chen Y 2020 Phys. Rev. Res. 2 013280
[31] Zhong J, Wang K, Park Y, Asadchy V, Wojcik C C, Dutt A, and Fan S H 2021 Phys. Rev. B 104 125416
[32] Yokomizo K, Yoda T, and Murakami S 2022 Phys. Rev. Res. 4 023089
[33] Liu G G, Mandal S, Zhou P, Xi X, Banerjee R, Hu Y H, Wei M, Wang M, Wang Q, Gao Z, Chen H, Yang Y, Chong Y, and Zhang B 2023 arXiv:2305.13139 [cond-mat.mes-hall]
[34] Zhu W W and Gong J B 2023 Phys. Rev. B 108 035406
[35] Chen S Y, Zheng L Z, Zhao L, Ke S L, Wang B, and Lu P X 2023 Opt. Lett. 48 5763
[36] Sun Y Y, Hou X G, Wan T, Wang F Y, Zhu S Y, Ruan Z C, and Yang Z J 2024 Phys. Rev. Lett. 132 063804
[37] Xu Q X, Peng Y C, Shi A Q, Peng P, and Liu J J 2024 J. Opt. Soc. Am. A 41 366
[38] Zhang X J, Tian Y, Jiang J H, Lu M H, and Chen Y F 2021 Nat. Commun. 12 5377
[39] Gu Z M, Gao H, Cao P C, Liu T, Zhu X F, and Zhu J 2021 Phys. Rev. Appl. 16 057001
[40] Cao P C, Li Y, Peng Y G, Qi M, Huang W X, Li P Q, and Zhu X F 2021 Commun. Phys. 4 230
[41] Lee C H, Li L, and Gong J 2019 Phys. Rev. Lett. 123 016805
[42] Ou Z, Wang Y, and Li L 2023 Phys. Rev. B 107 L161404
[43] Wang L W, Lin Z K, and Jiang J H 2023 Phys. Rev. B 108 195126
[44] Li Y H, Liang C, Wang C Y, Lu C C, and Liu Y C 2022 Phys. Rev. Lett. 128 223903
[45] Zhu W W and Gong J B 2022 Phys. Rev. B 106 035425
[46] Sun J S, Li C A, Feng S P, and Guo H M 2023 Phys. Rev. B 108 075122
[47] Yan B, Peng Y W, Xie J L, Peng Y C, Shi A Q, Li H, Gao F, Peng P, Jiang J, Liu J, Gao F, and Wen S C 2024 Laser & Photonics Rev. 18 2300686
[48] Liu Y X, Wang Y C, Liu X J, Zhou Q, and Chen S 2021 Phys. Rev. B 103 014203
[49] Liu Y X, Zhou Q, and Chen S 2021 Phys. Rev. B 104 024201
[50] Peng T, Hua C B, Chen R, Liu Z R, Xu D H, and Zhou B 2021 Phys. Rev. B 104 245302
[51] Shi A Q, Peng Y W, Jiang J P, Peng Y, Peng P, Chen J, Chen H S, Wen S C, Lin X, Gao F, and Liu J J 2024 Laser & Photonics Rev. 18 2300956
[52] Zhang H X, Chen T, Li L H, Lee C H, and Zhang X D 2023 Phys. Rev. B 107 085426
[53] Asbóth J K, Oroszlány L, and Pályi A 2016 Lect. Notes Phys. 919 166
[54] Ma X R, Cao K, Wang X R, Wei Z, and Kou S P 2023 arXiv:2304.01422 [quant-ph]
Related articles from Frontiers Journals
[1] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 037103
[2] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 037103
[3] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 037103
[4] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 037103
[5] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 037103
[6] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 037103
[7] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 037103
[8] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 037103
[9] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 037103
[10] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 037103
[11] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 037103
[12] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 037103
[13] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 037103
[14] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 037103
[15] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 037103
Viewed
Full text


Abstract