CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Anisotropic Band Evolution of Bulk Black Phosphorus Induced by Uniaxial Tensile Strain |
Yafeng Deng1, Yilin Zhang2, Yafei Zhao3*, Yongkang Xu1, Xingze Dai1, Shuanghai Wang1, Xianyang Lu1, Yao Li1, Yongbing Xu1*, and Liang He1* |
1National Key Laboratory of Spin Chip and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China 2College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China 3School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
|
|
Cite this article: |
Yafeng Deng, Yilin Zhang, Yafei Zhao et al 2024 Chin. Phys. Lett. 41 037102 |
|
|
Abstract We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus (BP) using angle-resolved photoemission spectroscopy and density functional theory. The results show that there are band crossings in the Z–L (armchair) direction, but not in the Z–A (zigzag) direction. The corresponding dispersion-$k$ distributions near the valence band maximum (VBM) exhibit quasi-linear or quadratic relationships, respectively. Along the armchair direction, the tensile strain expands the interlayer spacing and shifts the VBM to deeper levels with a slope of $-16.2$ meV/% strain. Conversely, the tensile strain along the zigzag direction compresses the interlayer spacing and causes the VBM to shift towards shallower levels with a slope of 13.1 meV/% strain. This work demonstrates an effective method for band engineering of bulk BP by uniaxial tensile strain, elucidates the mechanism behind it, and paves the way for strain-regulated optoelectronic devices based on bulk BP.
|
|
Received: 21 December 2023
Published: 12 March 2024
|
|
PACS: |
71.90.+q
|
(Other topics in electronic structure)
|
|
71.20.Mq
|
(Elemental semiconductors)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] | Qiao J S, Kong X H, Hu Z X, Yang F, and Ji W 2014 Nat. Commun. 5 4475 |
[2] | Koleśnik-Gray M, Meingast L, Siebert M, Unbehaun T, Huf T, Ellrott G, Abellán G, Wild S, Lloret V, Mundloch U, Schwarz J, Niebauer M, Szabo M, Rommel M, Hutzler A, Hauke F, Hirsch A, and Krstić V 2023 npj 2D Mater. Appl. 7 21 |
[3] | Zhang G W, Huang S Y, Chaves A, Song C Y, ÖzÇelik V O, Low T, and Yan H G 2017 Nat. Commun. 8 14071 |
[4] | Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, and Zhang Y B 2014 Nat. Nanotechnol. 9 372 |
[5] | Zhang Z C, Li L K, Horng J, Wang N Z, Yang F Y, Yu Y J, Zhang Y, Chen G R, Watanabe K, Taniguchi T, Chen X H, Wang F, and Zhang Y B 2017 Nano Lett. 17 6097 |
[6] | Zheng H M, Sun S M, Liu H, Huan Y W, Yang J G, Zhu B, Liu W J, and Ding S J 2018 Chin. Phys. Lett. 35 127302 |
[7] | Zhang G W, Chaves A, Huang S Y, Wang F J, Xing Q X, Low T, and Yan H G 2018 Sci. Adv. 4 eaap9977 |
[8] | Chen Z S, Dong J W, Papalazarou E, Marsi M, Giorgetti C, Zhang Z L, Tian B, Rueff J P, Taleb-Ibrahimi A, and Perfetti L 2019 Nano Lett. 19 488 |
[9] | Alidoust M, Halterman K, Pan D, Willatzen M, and Akola J 2020 Phys. Rev. B 102 115307 |
[10] | Xu Y J, Shi Z, Shi X Y, Zhang K, and Zhang H 2019 Nanoscale 11 14491 |
[11] | Liu H, Du Y C, Deng Y X, and Ye P D 2015 Chem. Soc. Rev. 44 2732 |
[12] | Low T, Rodin A S, Carvalho A, Jiang Y J, Wang H, Xia F, and Castro A H 2014 Phys. Rev. B 90 075434 |
[13] | Yan S L, Xie Z J, Chen J H, Taniguchi T, and Watanabe K 2017 Chin. Phys. Lett. 34 047304 |
[14] | Wei Q and Peng X H 2014 Appl. Phys. Lett. 104 251915 |
[15] | Wang J Y, Li Y, Zhan Z Y, Li T, Zhen L, and Xu C Y 2016 Appl. Phys. Lett. 108 013104 |
[16] | Taghizadeh S E, Zare M H, and Fazileh F 2015 Phys. Rev. B 91 085409 |
[17] | Takao Y and Morita A 1981 J. Phys. Soc. Jpn. 50 3362 |
[18] | Asahina H, Shindo K, and Morita A 1982 J. Phys. Soc. Jpn. 51 1193 |
[19] | Wu H R, Liu X F, Yin J, Zhou J X, and Guo W L 2016 Small 38 5276 |
[20] | Arra S, Babar R, and Kabir M 2019 Phys. Rev. B 99 045432 |
[21] | Tran V, Soklaski R, Liang Y, and Yang L 2014 Phys. Rev. B 89 235319 |
[22] | Huang S Y, Lu Y, Wang F J, Lei Y C, Song C Y, Zhang J S, Xing Q X, Wang C, Xie Y G, Mu L, Zhang G W, Yan H, Chen B, and Yan H G 2021 Phys. Rev. Lett. 127 186401 |
[23] | Zhang R Y, Zheng J M, and Jiang Z Y 2018 Chin. Phys. Lett. 35 017302 |
[24] | Xiang Z J, Ye G J, Shang C, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Luo X G, Zou L J, Sun Z, Zhang Y, and Chen X H 2015 Phys. Rev. Lett. 115 186403 |
[25] | Fei R X and Yang L 2014 Nano Lett. 14 2884 |
[26] | Zhu W N, Liang L B, Roberts R H, Lin J F, and Akinwande D 2018 ACS Nano 12 12512 |
[27] | Li Y Y, Hu Z X, Lin S H, Lai S K, Ji W, and Lau S P 2017 Adv. Funct. Mater. 27 1600986 |
[28] | Liu X L, Ryder C R, Wells S A, and Hersam M C 2017 Small Methods 1 1700143 |
[29] | Ling X, Huang S X, Hasdeo E H, Liang L B, Parkin W M, Tatsumi Y, Nugraha A R T, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kongv J, Saito R, Drndic M, Meunier V, and Dresselhaus M S 2016 Nano Lett. 16 2260 |
[30] | Nurmamat M, Ishida Y, Yori R, Sumida K, Zhu S, Nakatake M, Ueda Y, Taniguchi M, Shin S, Akahama Y, and Kimura A 2018 Sci. Rep. 8 9073 |
[31] | Hedayat H, Ceraso A, Soavi G, Akhavan S, Cadore A, Dallera C, Cerullo G, Ferrari A C, and Carpene E 2021 2D Mater. 8 025020 |
[32] | Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park Y G, Denlinger J, Yi Y, Choi H J, and Kim K S 2015 Science 349 723 |
[33] | Yang M and Liu H 2020 Phys. Scr. 95 035805 |
[34] | Zhang Q, Mao N N, Wu J X, Tong L M, Zhang J, and Liu Z R 2017 Small 13 1700466 |
[35] | Mao N N, Zhang S Q, Wu J X, Zhang J, and Tong L M 2018 Small Methods 2 1700409 |
[36] | Fei R and Yang L 2014 Appl. Phys. Lett. 105 083120 |
[37] | Jiang J W and Park H S 2014 Nat. Commun. 5 4727 |
[38] | Du Y C, Maassen J, Wu W R, Luo Z, Xu X, and Ye P D 2016 Nano Lett. 16 6701 |
[39] | Li L K, Kim J, Jin C H, Ye G J, Qiu D Y, Jornada F H, Shi Z W, Chen L, Zhang Z C, Yang F Y, Watanabe K, Taniguchi T, Ren W C, Louie S G, Chen X H, Zhang Z, and Wang F 2017 Nat. Nanotechnol. 12 21 |
[40] | Appalakondaiah S, Vaitheeswaran G, Lebègue S, Christensen N E, and Svane A 2012 Phys. Rev. B 86 035105 |
[41] | Huang S Y, Zhang G W, Fan F R, Song C Y, Wang F J, Xing Q X, Wang C, Wu H, and Yan H G 2019 Nat. Commun. 10 2447 |
[42] | Guan J, Song W, Yang L, and Tomanek D 2016 Phys. Rev. B 94 045414 |
[43] | Banerjee L, Mukhopadhyay A, Sengupta A, and Rahaman H 2016 J. Comput. Electron. 15 919 |
[44] | Yarmohammadi M, Mortezaei M, and Mirabbaszadeh K 2020 Physica E 124 114323 |
[45] | Duan H J, Yang M, and Wang R Q 2016 Physica E 81 177 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|