Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 037101    DOI: 10.1088/0256-307X/41/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dynamical $t/U$ Expansion of the Doped Hubbard Model
Wenxin Ding1,2* and Rong Yu3
1School of Physics and Material Science, Anhui University, Hefei 230601, China
2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Physics Department and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University, Beijing 100872, China
Cite this article:   
Wenxin Ding and Rong Yu 2024 Chin. Phys. Lett. 41 037101
Download: PDF(1148KB)   PDF(mobile)(1882KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct a new $U(1)$ slave-spin representation for the single-band Hubbard model in the large-$U$ limit. The mean-field theory in this representation is more amenable to describe both the spin-charge-separation physics of the Mott insulator at half-filling and the strange metal behavior at finite doping. By employing a dynamical Green's function theory for slave spins, we calculate the single-particle spectral function of electrons. The result is comparable to that in dynamical mean field theories. We then formulate a dynamical $t/U$ expansion for the doped Hubbard model that reproduces the mean-field results at the lowest order of expansion. To the next order of expansion, it naturally yields an effective low-energy theory of a $t$–$J$ model for spinons self-consistently coupled to an $XXZ$ model for the slave spins. We show that the superexchange $J$ is renormalized by doping, in agreement with the Gutzwiller approximation. Surprisingly, we find a new ferromagnetic channel of exchange interactions which survives in the infinite $U$ limit, as a manifestation of the Nagaoka ferromagnetism.
Received: 22 November 2023      Published: 19 March 2024
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  11.15.Me (Strong-coupling expansions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/037101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/037101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenxin Ding and Rong Yu
[1] Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418
[2] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[3] Hubbard J 1963 Proc. R. Soc. A: Math. Phys. Eng. Sci. 276 238
[4] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[5] Dagotto E 1994 Rev. Mod. Phys. 66 763
[6] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[7] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[8] MacDonald A H, Girvin S M S, and Yoshioka D 1988 Phys. Rev. B 37 9753
[9] Nagaoka Y 1966 Phys. Rev. 147 392
[10] Zhang F C, Gros C, Rice T M, and Shiba H 1988 Supercond. Sci. Technol. 1 36
[11] Delannoy J Y P, Gingras M J P, Holdsworth P C W, and Tremblay A M S 2005 Phys. Rev. B 72 115114
[12] Anderson P W 2006 Nat. Phys. 2 626
[13] Phillips P 2010 Rev. Mod. Phys. 82 1719
[14] Pairault S, Sénéchal D, and Tremblay A M S 1998 Phys. Rev. Lett. 80 5389
[15] Pairault S, Sénéchal D, and Tremblay A M S 2000 Eur. Phys. J. B 16 85
[16] Ding W, Yu R, Si Q, and Abrahams E 2019 Phys. Rev. B 100 235113
[17] Shastry B S 2011 Phys. Rev. Lett. 107 056403
[18] Yu R and Si Q 2012 Phys. Rev. B 86 085104
[19] Sakai S, Motome Y, and Imada M 2009 Phys. Rev. Lett. 102 056404
[20] de'Medici L, Georges A, and Biermann S 2005 Phys. Rev. B 72 205124
[21] Florens S and Georges A 2002 Phys. Rev. B 66 165111
[22] Florens S and Georges A 2004 Phys. Rev. B 70 035114
[23] Ding W and Si Q M 2018 arXiv:1810.03309 [cond-mat.str-el]
[24] Kondo J and Yamaji K 1972 Prog. Theor. Phys. 47 807
[25] Shimahara H and Takada S 1991 J. Phys. Soc. Jpn. 60 2394
[26] Gasser W, Heiner E, and Elk K 2001 Greensche Funktionen in Festkörper-und Vielteilchenphysik (Weinheim: Wiley-VCH Verlag)
[27] Frobrich P and Kuntz P 2006 Phys. Rep. 432 223
[28]Nolting W and Ramakanth A 2008 Quantum Theory of Magnetism (Berlin: Springer)
[29] Majlis N 2007 The Quantum Theory of Magnetism (Singerpore: World Scientific) chap 6
[30] Ding W X 2022 arXiv:2202.12082 [quant-ph]
[31] Hassan S R and de'Medici L 2010 Phys. Rev. B 81 035106
[32] Yu R and Si Q M 2011 Phys. Rev. B 84 235115
[33] Lee W C and Lee T K 2017 Phys. Rev. B 96 115114
[34] Lee W C 2016 arXiv:1605.03969 [cond-mat.str-el]
[35] Shastry B S 2012 Phys. Rev. Lett. 109 067004
[36] Anderson P W and Casey P A 2009 Phys. Rev. B 80 094508
[37] Casey P A and Anderson P W 2011 Phys. Rev. Lett. 106 097002
[38] Deng X Y, Mravlje J, Žitko R, Ferrero M, Kotliar G, and Georges A 2013 Phys. Rev. Lett. 110 086401
[39] Xu W H, Haule K, and Kotliar G 2013 Phys. Rev. Lett. 111 036401
[40] Tasaki H 1998 Prog. Theor. Phys. 99 489
[41] Sarkar T, Mandal P R, Poniatowski N R, and Greene R L 2020 arXiv:1902.11235 [cond-mat.supr-con]
[42] Sonier J E, Kaiser C V, Pacradouni V, Sabok-Sayr S A, Cochrane C, MacLaughlin D E, Komiya S, and Hussey N E 2010 Proc. Natl. Acad. Sci. USA 107 17131
[43] Butch N P, Jin K, Kirshenbaum K, Greene R L, and Paglione J 2012 Proc. Natl. Acad. Sci. USA 109 8440
[44] Kurashima K, Adachi T, Suzuki K M, Fukunaga Y, Kawamata T, Noji T, Miyasaka H, Watanabe I, Miyazaki M, Koda A, Kadono R, and Koike Y 2018 Phys. Rev. Lett. 121 057002
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 037101
[2] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 037101
[3] Long Xiong, Wei-Feng Zhuang, and Ming Gong. Dynamics of Quantum State and Effective Hamiltonian with Vector Differential Form of Motion Method[J]. Chin. Phys. Lett., 2022, 39(7): 037101
[4] Cheng-Ping He, Shun-Li Yu, Tao Xiang, and Jian-Xin Li. Effect of Impurity on the Doping-Induced in-Gap States in a Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(5): 037101
[5] Yanting Li , Bixia Gao , Qiyu Wang , Juan Zhang , and Qiaoni Chen. Coexistence of Charge Order and Antiferromagnetic Order in an Extended Periodic Anderson Model[J]. Chin. Phys. Lett., 2021, 38(8): 037101
[6] Su-Jun Yun, Tie-Kuang Dong, Shi-Ning Zhu. Validation of the Ability of Full Configuration Interaction Quantum Monte Carlo for Studying the 2D Hubbard Model[J]. Chin. Phys. Lett., 2017, 34(8): 037101
[7] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 037101
[8] Wei-Cheng Lee, Congjun Wu. Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$[J]. Chin. Phys. Lett., 2016, 33(03): 037101
[9] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams[J]. Chin. Phys. Lett., 2014, 31(07): 037101
[10] WU Biao, XU Yong, DONG Lin, and SHI Jun-Ren. Self-Consistent Approach for Mapping Interacting Systems in Continuous Space to Lattice Models[J]. Chin. Phys. Lett., 2012, 29(8): 037101
[11] QI Jian-Qing, WANG Lei, DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap[J]. Chin. Phys. Lett., 2010, 27(8): 037101
[12] GU Shi-Jian . Density-Functional Fidelity Approach to Quantum Phase Transitions[J]. Chin. Phys. Lett., 2009, 26(2): 037101
[13] YANG Zhen, NING Wen-Qiang. Negativity in the Extended Hubbard Model under External Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(1): 037101
[14] YAO Kai-Lun, SUN Xiao-Zhong, LIU Zu-Li, LI Yan-Chao, YU Li, GAO Guo-Ying. Block Entanglement in the Single-Hole Hubbard Model[J]. Chin. Phys. Lett., 2006, 23(9): 037101
[15] GONG Long-Yan, TONG Pei-Qing. Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials[J]. Chin. Phys. Lett., 2005, 22(11): 037101
Viewed
Full text


Abstract