CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$ |
Bo Li1, Xu-Tao Zeng1, Qianhui Xu1, Fan Yang1, Junsen Xiang2, Hengyang Zhong3, Sihao Deng4, Lunhua He4,2,5, Juping Xu4, Wen Yin4, Xingye Lu3, Huiying Liu1*, Xian-Lei Sheng1*, and Wentao Jin1* |
1School of Physics, Beihang University, Beijing 100191, China 2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China 4Spallation Neutron Source Science Center, Dongguan 523803, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Bo Li, Xu-Tao Zeng, Qianhui Xu et al 2024 Chin. Phys. Lett. 41 037104 |
|
|
Abstract Determination of the magnetic structure and confirmation of the presence or absence of inversion ($\mathcal{P}$) and time reversal ($\mathcal{T}$) symmetry is imperative for correctly understanding the topological magnetic materials. Here high-quality single crystals of the layered manganese pnictide CaMnSb$_2$ are synthesized using the self-flux method. De Haas–van Alphen oscillations indicate a nontrivial Berry phase of $\sim$ $\pi$ and a notably small cyclotron effective mass, supporting the Dirac semimetal nature of CaMnSb$_2$. Neutron diffraction measurements identify a C-type antiferromagnetic structure below $T_{\rm N} = 303(1)$ K with the Mn moments aligned along the $a$ axis, which is well supported by the density functional theory (DFT) calculations. The corresponding magnetic space group is $Pn'm'a'$, preserving a $\mathcal{P}\times\mathcal{T}$ symmetry. Adopting the experimentally determined magnetic structure, band crossings near the $Y$ point in momentum space and linear dispersions of the Sb $5{\rm p}_{y,\,z}$ bands are revealed by the DFT calculations. Furthermore, our study predicts the possible existence of an intrinsic second-order nonlinear Hall effect in CaMnSb$_2$, offering a promising platform to study the impact of topological properties on nonlinear electrical transports in antiferromagnets.
|
|
Received: 23 February 2024
Published: 25 March 2024
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
|
|
|
[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[2] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[3] | Rachel S 2018 Rep. Prog. Phys. 81 116501 |
[4] | Tokura Y, Yasuda K, and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 |
[5] | Lv B Q, Qian T, and Ding H 2021 Rev. Mod. Phys. 93 025002 |
[6] | Bansil A, Lin H, and Das T 2016 Rev. Mod. Phys. 88 021004 |
[7] | Bernevig A, Weng H, Fang Z, and Dai X 2018 J. Phys. Soc. Jpn. 87 041001 |
[8] | Hu J, Xu S Y, Ni N, and Mao Z Q 2019 Annu. Rev. Mater. Res. 49 207 %10.1146/annurev-matsci-070218-010023 |
[9] | Gao H, Venderbos J, Kim Y, and Rappe A M 2019 Annu. Rev. Mater. Res. 49 153 |
[10] | Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 |
[11] | Boothroyd A T 2022 Contemp. Phys. 63 305 |
[12] | Guo Y F, Princep A J, Zhang X, Manuel P, Khalyavin D, Mazin I I, Shi Y G, and Boothroyd A T 2014 Phys. Rev. B 90 075120 |
[13] | Liu Y, Ma T, Zhou L, Straszheim W E, Islam F, Jensen B A, Tian W, Heitmann T, Rosenberg R A, Wilde J M, Li B, Kreyssig A, Goldman A I, Ueland B G, McQueeney R J, and Vaknin D 2019 Phys. Rev. B 99 054435 |
[14] | Liu J, Hu J, Cao H et al. 2016 Sci. Rep. 6 30525 |
[15] | Soh J R, Jacobsen H et al. 2019 Phys. Rev. B 100 144431 |
[16] | Soh J R, Tobin S M, Su H, Zivkovic I, Ouladdiaf B, Stunault A, Rodrı́guez-Velamazán J A, Beauvois K, Guo Y, and Boothroyd A T 2021 Phys. Rev. B 104 L161103 |
[17] | Wang A, Zaliznyak I, Ren W et al. 2016 Phys. Rev. B 94 165161 |
[18] | Ryu H, Park S Y, Li L, Ren W, Neaton J B, Petrovic C, Hwang C, and Mo S K 2018 Sci. Rep. 8 15322 |
[19] | Park J, Lee G, Wolff-Fabris F et al. 2011 Phys. Rev. Lett. 107 126402 |
[20] | Feng Y, Wang Z, Chen C, Shi Y, Xie Z, Yi H, Liang A, He S, He J, Peng Y, Liu X, Liu Y, Zhao L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Dai X, Fang Z, and Zhou X J 2014 Sci. Rep. 4 5385 |
[21] | Rong H, Zhou L, He J, Song C, Xu Y, Cai Y, Li C, Wang Q, Zhao L, Liu G, Xu Z, Chen G, Weng H, and Zhou X 2021 Chin. Phys. B 30 067403 |
[22] | Kealhofer R, Jang S, Griffin S M, John C, Benavides K A, Doyle S, Helm T, Moll P J W, Neaton J B, Chan J Y, Denlinger J D, and Analytis J G 2018 Phys. Rev. B 97 045109 |
[23] | He J B, Fu Y, Zhao L X et al. 2017 Phys. Rev. B 95 045128 |
[24] | Rong H, Zhou L, He J et al. 2021 Phys. Rev. B 103 245104 |
[25] | Qiu Z, Le C, Dai, Xu B, He J B, Yang R, Chen G, Hu J, and Qiu X 2018 Phys. Rev. B 98 115151 |
[26] | Chen J, Kang L, Lu H, Luo P, Wang F, and He L 2018 Physica B 551 370 |
[27] | Xu J, Xia Y, Li Z, Chen H, Wang X, Sun Z, and Yin W 2021 Nucl. Instrum. Methods Phys. Res. Sect. A 1013 165642 |
[28] | Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 |
[29] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[30] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[31] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[32] | Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943 |
[33] | Brechtel E, Cordier G, and Schäfer H 1981 J. Less-Common Met. 79 131 |
[34] | Lifshitz I and Kosevich A 1956 Sov. Phys.-JETP 2 636 |
[35] | Mikitik G and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 |
[36] | Wang K, Graf D, Lei H, Tozer S W, and Petrovic C 2012 Phys. Rev. B 85 041101 |
[37] | Kondo M, Ochi M, Kojima T, Kurihara R, Sekine D, Matsubara M, Miyake A, Tokunaga M, Kuroki K, Murakawa H, Hanasaki N, and Sakai H 2021 Commun. Mater. 2 49 |
[38] | Huang S, Kim J, Shelton W A, Plummer E W, and Jin R 2017 Proc. Natl. Acad. Sci. USA 114 6256 |
[39] | Rodrı́guez-Carvajal J 1993 Physica B 192 55 |
[40] | Gao Y, Yang S A, and Niu Q 2014 Phys. Rev. Lett. 112 166601 |
[41] | Wang C, Gao Y, and Xiao D 2021 Phys. Rev. Lett. 127 277201 |
[42] | Liu H Y, Zhao J Z, Huang Y X, Wu W, Sheng X L, Xiao C, and Yang S A 2021 Phys. Rev. Lett. 127 277202 |
[43] | Das K, Lahiri S, Atencia R B, Culcer D, and Agarwal A 2023 Phys. Rev. B 108 L201405 |
[44] | Gao A, Liu Y F, Qiu J X, Ghosh B, Trevisan T V, Onishi Y, Hu C, Qian T, Tien H J, Chen S W, Huang M, Bérubé D, Li H, Tzschaschel C, Dinh T, Sun Z, Ho S C, Lien S W, Singh B, Watanabe K, Taniguchi T, Bell D C, Lin H, Chang T R, Du C R, Bansil A, Fu L, Ni N, Orth P P, Ma Q, and Xu S Y 2023 Science 381 181 |
[45] | Wang N, Kaplan D, Zhang Z, Holder T, Cao N, Wang A, Zhou X, Zhou F, Jiang Z, Zhang C, Ru S, Cai H, Watanabe K, Taniguchi T, Yan B, and Gao W 2023 Nature 621 487 |
[46] | Kaplan D, Holder T, and Yan B 2024 Phys. Rev. Lett. 132 026301 |
[47] | Smith T B, Pullasseri L, and Srivastava A 2022 Phys. Rev. Res. 4 013217 |
[48] | Wang J, Zeng H, Duan W, and Huang H 2023 Phys. Rev. Lett. 131 056401 |
[49] | Mazzola F, Ghosh B, Fujii J, Acharya G, Mondal D, Rossi G, Bansil A, Farias D, Hu J, Agarwal A, Politano A, and Vobornik I 2023 Nano Lett. 23 902 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|