CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Dynamical $t/U$ Expansion of the Doped Hubbard Model |
Wenxin Ding1,2* and Rong Yu3 |
1School of Physics and Material Science, Anhui University, Hefei 230601, China 2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Physics Department and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University, Beijing 100872, China
|
|
Cite this article: |
Wenxin Ding and Rong Yu 2024 Chin. Phys. Lett. 41 037101 |
|
|
Abstract We construct a new $U(1)$ slave-spin representation for the single-band Hubbard model in the large-$U$ limit. The mean-field theory in this representation is more amenable to describe both the spin-charge-separation physics of the Mott insulator at half-filling and the strange metal behavior at finite doping. By employing a dynamical Green's function theory for slave spins, we calculate the single-particle spectral function of electrons. The result is comparable to that in dynamical mean field theories. We then formulate a dynamical $t/U$ expansion for the doped Hubbard model that reproduces the mean-field results at the lowest order of expansion. To the next order of expansion, it naturally yields an effective low-energy theory of a $t$–$J$ model for spinons self-consistently coupled to an $XXZ$ model for the slave spins. We show that the superexchange $J$ is renormalized by doping, in agreement with the Gutzwiller approximation. Surprisingly, we find a new ferromagnetic channel of exchange interactions which survives in the infinite $U$ limit, as a manifestation of the Nagaoka ferromagnetism.
|
|
Received: 22 November 2023
Published: 19 March 2024
|
|
PACS: |
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
11.15.Me
|
(Strong-coupling expansions)
|
|
|
|
|
[1] | Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418 |
[2] | Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 |
[3] | Hubbard J 1963 Proc. R. Soc. A: Math. Phys. Eng. Sci. 276 238 |
[4] | Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 |
[5] | Dagotto E 1994 Rev. Mod. Phys. 66 763 |
[6] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[7] | Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491 |
[8] | MacDonald A H, Girvin S M S, and Yoshioka D 1988 Phys. Rev. B 37 9753 |
[9] | Nagaoka Y 1966 Phys. Rev. 147 392 |
[10] | Zhang F C, Gros C, Rice T M, and Shiba H 1988 Supercond. Sci. Technol. 1 36 |
[11] | Delannoy J Y P, Gingras M J P, Holdsworth P C W, and Tremblay A M S 2005 Phys. Rev. B 72 115114 |
[12] | Anderson P W 2006 Nat. Phys. 2 626 |
[13] | Phillips P 2010 Rev. Mod. Phys. 82 1719 |
[14] | Pairault S, Sénéchal D, and Tremblay A M S 1998 Phys. Rev. Lett. 80 5389 |
[15] | Pairault S, Sénéchal D, and Tremblay A M S 2000 Eur. Phys. J. B 16 85 |
[16] | Ding W, Yu R, Si Q, and Abrahams E 2019 Phys. Rev. B 100 235113 |
[17] | Shastry B S 2011 Phys. Rev. Lett. 107 056403 |
[18] | Yu R and Si Q 2012 Phys. Rev. B 86 085104 |
[19] | Sakai S, Motome Y, and Imada M 2009 Phys. Rev. Lett. 102 056404 |
[20] | de'Medici L, Georges A, and Biermann S 2005 Phys. Rev. B 72 205124 |
[21] | Florens S and Georges A 2002 Phys. Rev. B 66 165111 |
[22] | Florens S and Georges A 2004 Phys. Rev. B 70 035114 |
[23] | Ding W and Si Q M 2018 arXiv:1810.03309 [cond-mat.str-el] |
[24] | Kondo J and Yamaji K 1972 Prog. Theor. Phys. 47 807 |
[25] | Shimahara H and Takada S 1991 J. Phys. Soc. Jpn. 60 2394 |
[26] | Gasser W, Heiner E, and Elk K 2001 Greensche Funktionen in Festkörper-und Vielteilchenphysik (Weinheim: Wiley-VCH Verlag) |
[27] | Frobrich P and Kuntz P 2006 Phys. Rep. 432 223 |
[28] | Nolting W and Ramakanth A 2008 Quantum Theory of Magnetism (Berlin: Springer) |
[29] | Majlis N 2007 The Quantum Theory of Magnetism (Singerpore: World Scientific) chap 6 |
[30] | Ding W X 2022 arXiv:2202.12082 [quant-ph] |
[31] | Hassan S R and de'Medici L 2010 Phys. Rev. B 81 035106 |
[32] | Yu R and Si Q M 2011 Phys. Rev. B 84 235115 |
[33] | Lee W C and Lee T K 2017 Phys. Rev. B 96 115114 |
[34] | Lee W C 2016 arXiv:1605.03969 [cond-mat.str-el] |
[35] | Shastry B S 2012 Phys. Rev. Lett. 109 067004 |
[36] | Anderson P W and Casey P A 2009 Phys. Rev. B 80 094508 |
[37] | Casey P A and Anderson P W 2011 Phys. Rev. Lett. 106 097002 |
[38] | Deng X Y, Mravlje J, Žitko R, Ferrero M, Kotliar G, and Georges A 2013 Phys. Rev. Lett. 110 086401 |
[39] | Xu W H, Haule K, and Kotliar G 2013 Phys. Rev. Lett. 111 036401 |
[40] | Tasaki H 1998 Prog. Theor. Phys. 99 489 |
[41] | Sarkar T, Mandal P R, Poniatowski N R, and Greene R L 2020 arXiv:1902.11235 [cond-mat.supr-con] |
[42] | Sonier J E, Kaiser C V, Pacradouni V, Sabok-Sayr S A, Cochrane C, MacLaughlin D E, Komiya S, and Hussey N E 2010 Proc. Natl. Acad. Sci. USA 107 17131 |
[43] | Butch N P, Jin K, Kirshenbaum K, Greene R L, and Paglione J 2012 Proc. Natl. Acad. Sci. USA 109 8440 |
[44] | Kurashima K, Adachi T, Suzuki K M, Fukunaga Y, Kawamata T, Noji T, Miyasaka H, Watanabe I, Miyazaki M, Koda A, Kadono R, and Koike Y 2018 Phys. Rev. Lett. 121 057002 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|