Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 031301    DOI: 10.1088/0256-307X/41/3/031301
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions
Pan-Pan Shi1,2,3*, Vadim Baru4*, Feng-Kun Guo1,2,5*, Christoph Hanhart6*, and Alexey Nefediev7,8*
1 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain
4Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
5Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
6Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
7Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
8CeFEMA, Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
Cite this article:   
Pan-Pan Shi, Vadim Baru, Feng-Kun Guo et al  2024 Chin. Phys. Lett. 41 031301
Download: PDF(552KB)   PDF(mobile)(581KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In 2021, the Belle collaboration reported the first observation of a new structure in the $\psi(2S) \gamma$ final state produced in the two-photon fusion process. In the hadronic molecule picture, this new structure can be associated with the shallow isoscalar $D^*\bar{D}^*$ bound state and as such is an excellent candidate for the spin-2 partner of the $X(3872)$ with the quantum numbers $J^{\rm PC}=2^{++}$ conventionally named $X_2$. In this work we evaluate the electronic width of this new state and argue that its nature is sensitive to its total width, the experimental measurement currently available being unable to distinguish between different options. Our estimates demonstrate that the planned Super $\tau$-Charm Facility offers a promising opportunity to search for and study this new state in the invariant mass distributions for the final states $J/\psi\gamma$ and $\psi(2S)\gamma$.
Received: 19 December 2023      Published: 14 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/031301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/031301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pan-Pan Shi
Vadim Baru
Feng-Kun Guo
Christoph Hanhart
and Alexey Nefediev
[1] Chen H X, Chen W, Liu X, and Zhu S L 2016 Phys. Rep. 639 1
[2] Hosaka A, Iijima T, Miyabayashi K, Sakai Y, and Yasui S 2016 Prog. Theor. Exp. Phys. 2016 062C01
[3] Esposito A, Pilloni A, and Polosa A D 2017 Phys. Rep. 668 1
[4] Lebed R F, Mitchell R E, and Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143
[5] Ali A, Lange J S, and Stone S 2017 Prog. Part. Nucl. Phys. 97 123
[6] Olsen S L, Skwarnicki T, and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[7] Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, and Zou B S 2018 Rev. Mod. Phys. 90 015004
[8] Albuquerque R M, Dias J M, Khemchandani K P, Martínez Torres A, Navarra F S, Nielsen M, and Zanetti C M 2019 J. Phys. G 46 093002
[9] Liu Y R, Chen H X, Chen W, Liu X, and Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237
[10] Guo F K, Liu X H, and Sakai S 2020 Prog. Part. Nucl. Phys. 112 103757
[11] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A, and Yuan C Z 2020 Phys. Rep. 873 1
[12] Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2023 Rep. Prog. Phys. 86 026201
[13] Workman R L et al. 2022 Prog. Theor. Exp. Phys. 2022 083C01
[14] Choi S K et al. 2003 Phys. Rev. Lett. 91 262001
[15] Wang X L et al. 2022 Phys. Rev. D 105 112011
[16] Nieves J and Valderrama M P 2012 Phys. Rev. D 86 056004
[17] Guo F K, Hidalgo-Duque C, Nieves J, and Valderrama M P 2013 Phys. Rev. D 88 054007
[18] Albaladejo M, Guo F K, Hidalgo-Duque C, Nieves J, and Valderrama M P 2015 Eur. Phys. J. C 75 547
[19] Baru V, Epelbaum E, Filin A A, Hanhart C, Meißner U G, and Nefediev A V 2016 Phys. Lett. B 763 20
[20] Törnqvist N A 1994 Z. Phys. C 61 525
[21] Molina R and Oset E 2009 Phys. Rev. D 80 114013
[22] Hidalgo-Duque C, Nieves J, and Valderrama M P 2013 Phys. Rev. D 87 076006
[23] Sun Z F, Luo Z G, He J, Liu X, and Zhu S L 2012 Chin. Phys. C 36 194
[24] Hidalgo-Duque C, Nieves J, Ozpineci A, and Zamiralov V 2013 Phys. Lett. B 727 432
[25] Albaladejo M, Hidalgo-Duque C, Nieves J, and Oset E 2013 Phys. Rev. D 88 014510
[26] Liang W H, Molina R, and Oset E 2010 Eur. Phys. J. A 44 479
[27] Swanson E S 2005 J. Phys.: Conf. Ser. 9 79
[28] Cincioglu E, Nieves J, Ozpineci A, and Yilmazer A U 2016 Eur. Phys. J. C 76 576
[29] Baru V, Hanhart C, and Nefediev A V 2017 J. High Energy Phys. 2017(06) 010
[30] Ortega P G, Segovia J, Entem D R, and Fernández F 2018 Phys. Lett. B 778 1
[31] Mutuk H, Saraç Y, Gümüs H, and Ozpineci A 2018 Eur. Phys. J. C 78 904
[32] Wang Z G 2021 Int. J. Mod. Phys. A 36 2150107
[33] Dong X K, Guo F K, and Zou B S 2021 Prog. Phys. 41 65
[34] Montaña G, Ramos A, Tolos L, and Torres-Rincon J M 2023 Phys. Rev. D 107 054014
[35] Wu Q, Liu M Z, and Geng L S 2024 Eur. Phys. J. C 84 147
[36] Wang B, Chen K, Meng L, and Zhu S L 2024 Phys. Rev. D 109 034027
[37] Duan M Y, Chen D Y, and Wang E 2022 Eur. Phys. J. C 82 968
[38] Yue Z L, Duan M Y, Liu C H, Chen D Y, and Dong Y B 2022 Phys. Rev. D 106 054008
[39] Maiani L, Piccinini F, Polosa A D, and Riquer V 2014 Phys. Rev. D 89 114010
[40] Wu J, Liu X, Liu Y R, and Zhu S L 2019 Phys. Rev. D 99 014037
[41] Shi P P, Huang F, and Wang W L 2021 Phys. Rev. D 103 094038
[42] Giron J F, Lebed R F, and Martinez S R 2021 Phys. Rev. D 104 054001
[43] Godfrey S and Isgur N 1985 Phys. Rev. D 32 189
[44] Li B Q, Meng C, and Chao K T 2009 Phys. Rev. D 80 014012
[45] Shi P P, Dias J M, and Guo F K 2023 Phys. Lett. B 843 137987
[46] Artoisenet P and Braaten E 2010 Phys. Rev. D 81 114018
[47] Guo F K, Meißner U G, Wang W, and Yang Z 2014 Eur. Phys. J. C 74 3063
[48] Shi P P, Zhang Z H, Guo F K, and Yang Z 2022 Phys. Rev. D 105 034024
[49]Martin B R and Shaw G 2017 Particle Physics 4th edn (New York: Wiley)
[50] Koenigstein A, Giacosa F, and Rischke D H 2016 Ann. Phys. 368 16
[51] Shastry V, Trotti E, and Giacosa F 2022 Phys. Rev. D 105 054022
[52] O'Connell H B, Pearce B C, Thomas A W, and Williams A G 1997 Prog. Part. Nucl. Phys. 39 201
[53] Klingl F, Kaiser N, and Weise W 1996 Z. Phys. A 356 193
[54] Korchin A Y and Kovalchuk V A 2011 arXiv:1111.4093 [hep-ph]
[55] Bauer T H, Spital R D, Yennie D R, and Pipkin F M 1978 Rev. Mod. Phys. 50 261
[56] Ecker G, Gasser J, Pich A, and de Rafael E 1989 Nucl. Phys. B 321 311
[57]Sakurai J J 1969 Currents and Mesons (Chicago: University of Chicago Press)
[58] Meißner U G 1988 Phys. Rep. 161 213
[59] Zou B S and Hussain F 2003 Phys. Rev. C 67 015204
[60] Denig A, Guo F K, Hanhart C, and Nefediev A V 2014 Phys. Lett. B 736 221
[61] Ji T, Dong X K, Albaladejo M, Du M L, Guo F K, Nieves J, and Zou B S 2023 Sci. Bull. 68 688
[62] Christas M A and Dhir R 2023 arXiv:2311.05274 [hep-ph]
[63] Landau L D 1960 J. Exp. Theor. Phys. 39 1856
[64] Weinberg S 1965 Phys. Rev. 137 B672
[65] Shtabovenko V, Mertig R, and Orellana F 2020 Comput. Phys. Commun. 256 107478
[66] Shtabovenko V 2017 Comput. Phys. Commun. 218 48
[67] Guo F K, Hanhart C, Kalashnikova Y S, Meißner U G, and Nefediev A V 2015 Phys. Lett. B 742 394
[68] Kuhn J H, Kaplan J, and Safiani E G O 1979 Nucl. Phys. B 157 125
[69] Kivel N and Vanderhaeghen M 2016 J. High Energy Phys. 2016(02) 32
[70] Eichten E J and Quigg C 1995 Phys. Rev. D 52 1726
[71] Ebert D, Faustov R N, and Galkin V O 2003 Phys. Rev. D 67 014027
[72] Ebert D, Faustov R N, and Galkin V O 2013 Phys. At. Nucl. 76 1554
[73] Ferretti J, Galatà G, and Santopinto E 2013 Phys. Rev. C 88 015207
[74] Adachi I et al. 2011 arXiv:1105.4583 [hep-ex]
[75] Wang Q, Baru V, Filin A A, Hanhart C, Nefediev A V, and Wynen J L 2018 Phys. Rev. D 98 074023
[76] Baru V, Epelbaum E, Filin A A, Hanhart C, Nefediev A V, and Wang Q 2019 Phys. Rev. D 99 094013
[77] Achasov M et al. 2024 Front. Phys. 19 14701
[78] Ablikim M et al. 2015 Chin. Phys. C 39 093001
[79] Ablikim M et al. 2022 Chin. Phys. C 46 113002
[80] Ablikim M et al. 2020 Chin. Phys. C 44 040001
Related articles from Frontiers Journals
[1] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 031301
[2] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 031301
[3] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 031301
[4] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 031301
[5] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 031301
[6] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 031301
[7] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 031301
[8] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 031301
[9] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 031301
[10] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 031301
[11] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 031301
[12] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 031301
[13] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 031301
[14] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 031301
[15] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 031301
Viewed
Full text


Abstract