Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 031202    DOI: 10.1088/0256-307X/41/3/031202
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Critical Opalescence and Its Impact on the Jet Quenching Parameter $\hat{q}$
Jing Wu1, Shanshan Cao2*, and Feng Li1,3,4,5*
1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
3Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
4Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
5Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
Cite this article:   
Jing Wu, Shanshan Cao, and Feng Li 2024 Chin. Phys. Lett. 41 031202
Download: PDF(2698KB)   PDF(mobile)(2724KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Jet quenching parameter $\hat{q}$ is essential for characterizing the interaction strength between jet partons and nuclear matter. Based on the quark-meson model, we develop a new framework for calculating $\hat{q}$ at finite chemical potentials, in which $\hat{q}$ is related to the spectral function of the chiral order parameter. A mean field perturbative calculation up to the one-loop order indicates that the momentum broadening of jets is enhanced at both high temperature and high chemical potential, and approximately proportional to the parton number density in the partonic phase. We further investigate the behavior of $\hat{q}$ in the vicinity of the critical endpoint (CEP) by coupling our calculation with a recently developed equation of state that includes a CEP in the universality class of the Ising model, from which we discover the partonic critical opalescence, i.e., the divergence of scattering rate of jets and their momentum broadening at the CEP, contributed by scatterings via the $\sigma$ exchange process. Hence, for the first time, jet quenching is connected with the search of CEP.
Received: 24 January 2024      Editors' Suggestion Published: 29 March 2024
PACS:  12.38.Mh (Quark-gluon plasma)  
  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/031202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/031202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Wu
Shanshan Cao
and Feng Li
[1] Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30
[2] Jacobs P and Wang X N 2005 Prog. Part. Nucl. Phys. 54 443
[3] Aoki Y, Endrodi G, Fodor Z, Katz S D, and Szabo K K 2006 Nature 443 675
[4] Bazavov A et al. 2012 Phys. Rev. D 85 054503
[5] Stephanov M A 2009 Phys. Rev. Lett. 102 032301
[6] Asakawa M, Ejiri S, and Kitazawa M 2009 Phys. Rev. Lett. 103 262301
[7] Athanasiou C, Rajagopal K, and Stephanov M 2010 Phys. Rev. D 82 074008
[8] Stephanov M A 2011 Phys. Rev. Lett. 107 052301
[9] Jiang L, Li P, and Song H 2016 Phys. Rev. C 94 024918
[10] Herold C, Nahrgang M, Yan Y, and Kobdaj C 2016 Phys. Rev. C 93 021902
[11] Bluhm M, Nahrgang M, Bass S A, and Schaefer T 2017 Eur. Phys. J. C 77 210
[12] Stephanov M and Yin Y 2018 Phys. Rev. D 98 036006
[13] Wu S, Wu Z, and Song H 2019 Phys. Rev. C 99 064902
[14] Nahrgang M, Bluhm M, Schaefer T, and Bass S A 2019 Phys. Rev. D 99 116015
[15] An X, Başsar G, Stephanov M, and Yee H U 2020 Phys. Rev. C 102 034901
[16] Pradeep M, Rajagopal K, Stephanov M, and Yin Y 2022 Phys. Rev. D 106 036017
[17] Abdallah M et al. 2021 Phys. Rev. C 104 024902
[18] Sun K J, Li F, and Ko C M 2021 Phys. Lett. B 816 136258
[19] Majumder A and Van Leeuwen M 2011 Prog. Part. Nucl. Phys. 66 41
[20] Armesto N, Cole B, Gale C, Horowitz W A, Jacobs P et al. 2012 Phys. Rev. C 86 064904
[21] Bass S A et al. 2009 Phys. Rev. C 79 024901
[22] Burke K M et al. 2014 Phys. Rev. C 90 014909
[23] Qin G Y and Wang X N 2015 Int. J. Mod. Phys. E 24 1530014
[24] Cao S S and Wang X N 2021 Rep. Prog. Phys. 84 024301
[25] Chien Y T and Vitev I 2016 J. High Energy Phys. 2016(05) 23
[26] Casalderrey-Solana J, Gulhan D, Milhano G, Pablos D, and Rajagopal K 2017 J. High Energy Phys. 2017(03) 135
[27] Tachibana Y, Chang N B, and Qin G Y 2017 Phys. Rev. C 95 044909
[28] Kunnawalkam Elayavalli R and Zapp K C 2017 J. High Energy Phys. 2017(07) 141
[29] Luo T, Cao S, He Y, and Wang X N 2018 Phys. Lett. B 782 707
[30] Chang N B, Cao S, and Qin G Y 2018 Phys. Lett. B 781 423
[31] Mehtar-Tani Y and Tywoniuk K 2017 J. High Energy Phys. 2017(04) 125
[32] Milhano G, Wiedemann U A, and Zapp K C 2018 Phys. Lett. B 779 409
[33] Chen W, Cao S, Luo T, Pang L G, and Wang X N 2020 Phys. Lett. B 810 135783
[34] Qin G Y, Ruppert J, Gale C, Jeon S, and Moore G D 2009 Phys. Rev. C 80 054909
[35] Chen W, Cao S, Luo T, Pang L G, and Wang X N 2018 Phys. Lett. B 777 86
[36] Zhang S L, Luo T, Wang X N, and Zhang B W 2018 Phys. Rev. C 98 021901
[37] Chen W, Yang Z, He Y, Ke W, Pang L G, and Wang X N 2021 Phys. Rev. Lett. 127 082301
[38] Chen W, Cao S S, Luo T, Pang L G, and Wang X N 2021 Nucl. Phys. A 1005 121934
[39] Luo A, Mao Y X, Qin G Y, Wang E K, and Zhang H Z 2021 arXiv:2109.14314 [hep-ph]
[40] Adamczyk L et al. 2018 Phys. Rev. Lett. 121 032301
[41] Baier R 2003 Nucl. Phys. A 715 209c
[42] Majumder A 2013 Phys. Rev. C 80 031902
[43] Majumder A 2013 Phys. Rev. C 87 034905
[44] Panero M, Rummukainen K, and Schäfer A 2014 Phys. Rev. Lett. 112 162001
[45] Kumar A, Majumder A, and Weber J H 2022 Phys. Rev. D 106 034505
[46] Cao S et al. 2021 Phys. Rev. C 104 024905
[47] Ke W Y and Wang X N 2021 J. High Energy Phys. 2021(05) 041
[48] Xie M, Ke W, Zhang H Z, and Wang X N 2022 arXiv:2206.01340 [hep-ph]
[49] Schaefer B J, Pawlowski J M, and Wambach J 2007 Phys. Rev. D 76 074023
[50] Parotto P, Bluhm M, Mroczek D, Nahrgang M, Noronha-Hostler J, Rajagopal K, Ratti C, Schäfer T, and Stephanov M 2020 Phys. Rev. C 101 034901
[51] Martinez M, Schäfer T, and Skokov V 2019 Phys. Rev. D 100 074017
[52] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[53] Martin P C and Schwinger J S 1959 Phys. Rev. 115 1342
[54]Onuki A 2013 Phase Transition Dynamics (Phase Transition Dynamics)
[55] Akamatsu Y, Teaney D, Yan F, and Yin Y 2019 Phys. Rev. C 100 044901
[56] Halperin B I, Hohenberg P C, and Ma S K 1974 Phys. Rev. B 10 139
[57] Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena (Oxford: Oxford University Press)
[58] Schweitzer D, Schlichting S, and von Smekal L 2020 Nucl. Phys. B 960 115165
[59] Schweitzer D, Schlichting S, and von Smekal L 2021 arXiv:2110.01696 [hep-lat]
[60] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435
[61] Kawasaki K 1970 Ann. Phys. 61 1
[62] Zhu X R and Zhang Z Q 2020 arXiv:2006.14324 [nucl-th]
[63] Grefa J, Hippert M, Noronha J, Noronha-Hostler J, Portillo I, Ratti C, and Rougemont R 2022 Phys. Rev. D 106 034024
[64] McLaughlin E, Rose J, Parotto P, Ratti C, and Noronha-Hostler J 2021 arXiv:2103.03329 [nucl-th]
Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 031202
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 031202
[3] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 031202
[4] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 031202
[5] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 031202
[6] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 031202
[7] Barbara Betz, Miklos Gyulassy. Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC[J]. Chin. Phys. Lett., 2015, 32(12): 031202
[8] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 031202
[9] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 031202
[10] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 031202
[11] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 031202
[12] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 031202
[13] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 031202
[14] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 031202
[15] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 031202
Viewed
Full text


Abstract