Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 033201    DOI: 10.1088/0256-307X/41/3/033201
ATOMIC AND MOLECULAR PHYSICS |
Tuning Excitation Transport in a Dissipative Rydberg Ring
Yiwen Han1 and Wei Yi1,2*
1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
Cite this article:   
Yiwen Han and Wei Yi 2024 Chin. Phys. Lett. 41 033201
Download: PDF(2405KB)   PDF(mobile)(2600KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate the flexible tunability of excitation transport in Rydberg atoms, under the interplay of controlled dissipation and interaction-induced synthetic flux. Considering a minimum four-site setup, i.e., a triangular configuration with an additional output site, we study the transport of a single excitation, injected into a vertex of the triangle, through the structure. While the long-range dipole-dipole interactions between the Rydberg atoms lead to geometry-dependent Peierls phases in the hopping amplitudes of excitations, we further introduce on-site dissipation to a vertex of the triangle. As a result, both the chirality and destination of the transport can be manipulated through the flux and dissipation. In particular, we illustrate a parameter regime where our Rydberg-ring structure may serve as a switch for transporting the injected excitation through to the output site. The underlying mechanism is then analyzed by studying the chiral trajectory of the excitation and the time-dependent dissipation. The switchable excitation transport reported here offers a flexible tool for quantum control in Rydberg atoms, and holds interesting potentials for applications in quantum simulation and quantum information.
Received: 24 November 2023      Published: 12 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/033201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/033201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yiwen Han and Wei Yi
[1] Saffman M, Walker T G, and Mølmer K 2010 Rev. Mod. Phys. 82 2313
[2] Morgado M and Whitlock S 2021 AVS Quantum Sci. 3 023501
[3] Wu X, Liang X, Tian Y, Yang F, Chen C, Liu Y C, Tey M K, and You L 2021 Chin. Phys. B 30 020305
[4] Browaeys A and Lahaye T 2020 Nat. Phys. 16 132
[5] Ashkin A, Dziedzic J M, Bjorkholm J E, and Chu S 1986 Opt. Lett. 11 288
[6] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletić V, and Lukin M D 2021 Nature 595 227
[7] Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K N, Lienhard V, Henry L P, Lang T C, Lahaye T, Läuchli A M, and Browaeys A 2021 Nature 595 233
[8] Weber S, Tresp C, Menke H, Urvoy A, Firstenberg O, Büchler H P, and Hofferberth S 2017 J. Phys. B 50 133001
[9] Browaeys A, Barredo D, and Lahaye T 2016 J. Phys. B 49 152001
[10] de Léséleuc S, Weber S, Lienhard V, Barredo D, Büchler H P, Lahaye T, and Browaeys A 2018 Phys. Rev. Lett. 120 113602
[11] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletić V, and Lukin M D 2017 Nature 551 579
[12] Schauss P 2018 Quantum Sci. Technol. 3 023001
[13] Barredo D, Labuhn H, Ravets S, Lahaye T, Browaeys A, and Adams C S 2015 Phys. Rev. Lett. 114 113002
[14] Signoles A, Franz T, Ferracini Alves R, Gärttner M, Whitlock S, Zürn G, and Weidemüller M 2021 Phys. Rev. X 11 011011
[15] Steinert L M, Osterholz P, Eberhard R, Festa L, Lorenz N, Chen Z, Trautmann A, and Gross C 2023 Phys. Rev. Lett. 130 243001
[16] de Léséleuc S, Weber S, Lienhard V, Barredo D, Büchler H P, Lahaye T, and Browaeys A 2019 Science 365 775
[17] Verresen R, Lukin M D, and Vishwanath A 2021 Phys. Rev. X 11 031005
[18] Weber S, Bai R, Makki N, Mögerle J, Lahaye T, Browaeys A, Daghofer M, Lang N, and Büchler H P 2022 PRX Quantum 3 030302
[19] Zhang J, Unmuth-Yockey J, Zeiher J, Bazavov A, Tsai S W, and Meurice Y 2018 Phys. Rev. Lett. 121 223201
[20] Celi A, Vermersch B, Viyuela O, Pichler H, Lukin M D, and Zoller P 2020 Phys. Rev. X 10 021057
[21] Notarnicola S, Collura M, and Montangero S 2020 Phys. Rev. Res. 2 013288
[22] Surace F M, Mazza P P, Giudici G, Lerose A, Gambassi A, and Dalmonte M 2020 Phys. Rev. X 10 021041
[23] González-Cuadra D, Zache T V, Carrasco J, Kraus B, and Zoller P 2022 Phys. Rev. Lett. 129 160501
[24] Giudici G, Lukin M D, and Pichler H 2022 Phys. Rev. Lett. 129 090401
[25] Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, and Lukin M D 2021 Science 374 1242
[26] Cheng Y, Li C, and Zhai H 2023 New J. Phys. 25 033010
[27] Kalinowski M, Maskara N, and Lukin M D 2023 Phys. Rev. X 13 031008
[28] Ohler S, Kiefer-Emmanouilidis M, and Fleischhauer M 2023 Phys. Rev. Res. 5 013157
[29] Lienhard V, Scholl P, Weber S, Barredo D, de Léséleuc S, Bai R, Lang N, Fleischhauer M, Büchler H P, Lahaye T, and Browaeys A 2020 Phys. Rev. X 10 021031
[30] Zhao Y and Shi X F 2023 Phys. Rev. A 108 053107
[31] Poon T F J, Zhou X C, Wang B Z, Yang T H, and Liu X J 2024 Adv. Quantum Technol. 2024 2300356
[32] Yang T H, Wang B Z, Zhou X C, and Liu X J 2022 Phys. Rev. A 106 L021101
[33] Wu X, Yang F, Yang S, Mølmer K, Pohl T, Tey M K, and You L 2022 Phys. Rev. Res. 4 L032046
[34] Li X X, You J B, Shao X Q, and Li W 2022 Phys. Rev. A 105 032417
[35] Perciavalle F, Rossini D, Haug T, Morsch O, and Amico L 2023 Phys. Rev. A 108 023305
[36] Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249
[37] Shen R, Chen T, Aliyu M M, Qin F, Zhong Y, Loh H, and Lee C H 2023 Phys. Rev. Lett. 131 080403
[38] Peter D, Yao N Y, Lang N, Huber S D, Lukin M D, and Büchler H P 2015 Phys. Rev. A 91 053617
[39] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O'Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, and Martinis J 2017 Nat. Phys. 13 146
[40] Itano W M, Heinzen D J, Bollinger J J, and Wineland D J 1990 Phys. Rev. A 41 2295
[41] Petrosyan D and Mølmer K 2013 Phys. Rev. A 87 033416
[42] Rao D D B and Mølmer K 2014 Phys. Rev. A 90 062319
Related articles from Frontiers Journals
[1] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 033201
[2] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 033201
[3] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 033201
[4] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 033201
[5] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 033201
[6] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 033201
[7] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 033201
[8] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 033201
[9] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 033201
[10] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 033201
[11] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 033201
[12] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 033201
[13] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 033201
[14] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 033201
[15] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 033201
Viewed
Full text


Abstract