THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Two-Body Hadronic Weak Decays of Bottomed Hadrons |
Ying Zhang1,2, Guangzhao He1,2, Quanxing Ye1,2, Da-Cheng Yan3*, Jun Hua1,2*, and Qian Wang1,2,4* |
1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (MOE), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China 2Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Provincial Key Laboratory of Nuclear Science, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China 3School of Mathematics and Physics, Changzhou University, Changzhou 213164, China 4Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, China
|
|
Cite this article: |
Ying Zhang, Guangzhao He, Quanxing Ye et al 2024 Chin. Phys. Lett. 41 021301 |
|
|
Abstract The structure of light diquarks plays a crucial role in formation of exotic hadrons beyond the conventional quark model, especially with regard to the line shapes of bottomed hadron decays. We study the two-body hadronic weak decays of bottomed baryons and bottomed mesons to probe the light diquark structure and to pin down the quark–quark correlations in the diquark picture. It is found that the light diquark does not favor a compact structure. For instance, the isoscalar diquark $[ud]$ in $\varLambda_{b}^{0}$ can be easily split and rearranged to form $\varSigma_{c}^{(*)}\bar{D}^{(*)}$ via the color-suppressed transition. This provides a hint that the hidden charm pentaquark states produced in $\varLambda^0_b$ decays could be the $\varSigma_{c}^{(*)}\bar{D}^{(*)}$ hadronic molecular candidates. This quantitative study resolves the apparent conflicts between the production mechanism and the molecular nature of these $P_c$ states observed in experiment.
|
|
Received: 25 October 2023
Editors' Suggestion
Published: 07 March 2024
|
|
|
|
|
|
[1] | Gell M M 2019 Resonance 24 923 |
[2] | Zweig G 1964 CERN-TH-401 |
[3] | Choi S K et al. [Belle] 2003 Phys. Rev. Lett. 91 262001 |
[4] | Uehara S et al. [Belle] 2006 Phys. Rev. Lett. 96 082003 |
[5] | Aaltonen T et al. [CDF] 2009 Phys. Rev. Lett. 102 242002 |
[6] | Aaij R et al. [LHCb] 2017 Phys. Rev. Lett. 118 022003 |
[7] | Aaij R et al. [LHCb] 2019 Phys. Rev. Lett. 122 222001 |
[8] | Olsen S L, Skwarnicki T, and Zieminska D 2018 Rev. Mod. Phys. 90 015003 |
[9] | Yuan C Z 2019 EPJ Web Conf. 202 01004 |
[10] | Yuan C Z, and Olsen S L 2019 Nat. Rev. Phys. 1 480 |
[11] | Brambilla N et al. 2020 Phys. Rep. 873 1 |
[12] | Robertson G [LHCb] 2022 arXiv:2107.14560 [hep-ex] |
[13] | Fang B [LHCb] 2022 Nucl. Part. Phys. Proc. 318–323 66 |
[14] | Chen S Z et al. 2023 Front. Phys. 18 44601 |
[15] | Zhang J Q [CMS] 2023 Proc. Sci. 445 088 |
[16] | Liu Z Q and Mitchell R E 2023 Sci. Bull. 68 2148 |
[17] | Jia S, Xiong W T, and Shen C P 2023 Chin. Phys. Lett. 40 121301 |
[18] | Wu J J, Molina R, Oset E, and Zou B S 2010 Phys. Rev. Lett. 105 232001 |
[19] | Wang W L, Huang F, Zhang Z Y, and Zou B S 2011 Phys. Rev. C 84 015203 |
[20] | Wu J J, Lee T S H, and Zou B S 2012 Phys. Rev. C 85 044002 |
[21] | Xiao C W, Nieves J, and Oset E 2013 Phys. Rev. D 88 056012 |
[22] | Karliner M and Rosner J L 2015 Phys. Rev. Lett. 115 122001 |
[23] | Liu M Z et al. 2019 Phys. Rev. Lett. 122 242001 |
[24] | Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, and Wang Q 2020 Phys. Rev. Lett. 124 072001 |
[25] | Peng F Z, Yan M J, Sánchez M S, and Valderrama M P 2023 Phys. Lett. B 846 138207 |
[26] | Yang Z Y, Peng F Z, Yan M J, Sánchez M S, and Valderrama M P 2022 arXiv:2211.08211 [hep-ph] |
[27] | Xing H Y, Liang J, Liu L M, Sun P, and Yang Y B 2022 arXiv:2210.08555 [hep-lat] |
[28] | Yalikun N, Lin Y H, Guo F K, Kamiya Y, and Zou B S 2021 Phys. Rev. D 104 094039 |
[29] | Yan M J, Peng F Z, Sánchez M S, and Valderrama M P 2022 Eur. Phys. J. C 82 574 |
[30] | Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, and Wang Q 2021 J. High Energy Phys. 2021(08) 157 |
[31] | Kuang S Q, Dai L Y, Kang X W, and Yao D L 2020 Eur. Phys. J. C 80 433 |
[32] | Pan Y W, Liu M Z, Peng F Z, Sánchez M S, Geng L S, and Valderrama M P 2020 Phys. Rev. D 102 011504 |
[33] | Liu M Z, Wu T W, Sánchez M S, Valderrama M P, Geng L S, and Xie J J 2021 Phys. Rev. D 103 054004 |
[34] | Wang F L, Chen R, Liu Z W, and Liu X 2020 Phys. Rev. C 101 025201 |
[35] | Chen R, Sun Z F, Liu X, and Zhu S L 2019 Phys. Rev. D 100 011502 |
[36] | Wang B, Meng L, and Zhu S L 2019 J. High Energy Phys. 2019(11) 108 |
[37] | Chen H X, Chen W, and Zhu S L 2019 Phys. Rev. D 100 051501 |
[38] | Guo F K, Jing H J, Meißner U G, and Sakai S 2019 Phys. Rev. D 99 091501 |
[39] | He J 2019 Eur. Phys. J. C 79 393 |
[40] | Guo Z H and Oller J A 2019 Phys. Lett. B 793 144 |
[41] | Shimizu Y, Yamaguchi Y, and Harada M 2019 arXiv:1904.00587 [hep-ph] |
[42] | Xiao C J, Huang Y, Dong Y B, Geng L S, and Chen D Y 2019 Phys. Rev. D 100 014022 |
[43] | Xiao C W, Nieves J, and Oset E 2019 Phys. Rev. D 100 014021 |
[44] | Meng L, Wang B, Wang G J, and Zhu S L 2019 Phys. Rev. D 100 014031 |
[45] | Wu J J, Lee T S H, and Zou B S 2019 Phys. Rev. C 100 035206 |
[46] | Xiao C W, Nieves J, and Oset E 2019 Phys. Lett. B 799 135051 |
[47] | Voloshin M B 2019 Phys. Rev. D 100 034020 |
[48] | Sakai S, Jing H J, and Guo F K 2019 Phys. Rev. D 100 074007 |
[49] | Yamaguchi Y, Garcia T H, Giachino A, Hosaka A, Santopinto E, Takeuchi S, and Takizawa M 2020 Phys. Rev. D 101 091502 |
[50] | Lin Y H and Zou B S 2019 Phys. Rev. D 100 056005 |
[51] | Gutsche T and Lyubovitskij V E 2019 Phys. Rev. D 100 094031 |
[52] | Burns T J and Swanson E S 2019 Phys. Rev. D 100 114033 |
[53] | Dong X K, Guo F K, and Zou B S 2021 Phys. Rev. Lett. 126 152001 |
[54] | Liu X H, Wang Q, and Zhao Q 2016 Phys. Lett. B 757 231 |
[55] | Burns T J and Swanson E S 2022 Phys. Rev. D 106 054029 |
[56] | Workman R L et al. [PDG] 2022 Prog. Theor. Exp. Phys. 2022 083C01 |
[57] | Leibovich A K, Ligeti Z, Stewart I W, and Wise M B 2004 Phys. Lett. B 586 337 |
[58] | Fan Y Y, Wang W F, Cheng S, and Xiao Z J 2013 Phys. Rev. D 87 094003 |
[59] | Zhang C Q, Li J M, Jia M K, and Rui Z 2022 Phys. Rev. D 105 073005 |
[60] | Buchalla G, Buras A J, and Lautenbacher M E 1996 Rev. Mod. Phys. 68 1125 |
[61] | Li R H, Lü C D, and Zou H 2008 Phys. Rev. D 78 014018 |
[62] | Wang W, Yu F S, and Zhao Z X 2017 Eur. Phys. J. C 77 781 |
[63] | Ke H W, Lu F, Liu X H, and Li X Q 2020 Eur. Phys. J. C 80 140 |
[64] | Chang Q, Li X N, Li X Q, and Su F 2018 Chin. Phys. C 42 073102 |
[65] | Qin Q, Li H, Lü C D, and Yu F S 2014 Phys. Rev. D 89 054006 |
[66] | Jia C P, Wang D, and Yu F S 2020 Nucl. Phys. B 956 115048 |
[67] | Huber T and Tetlalmatzi X G 2022 Eur. Phys. J. C 82 210 |
[68] | Nakamura S X, Hosaka A, and Yamaguchi Y 2021 Phys. Rev. D 104 L091503 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|