Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 021301    DOI: 10.1088/0256-307X/41/2/021301
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Two-Body Hadronic Weak Decays of Bottomed Hadrons
Ying Zhang1,2, Guangzhao He1,2, Quanxing Ye1,2, Da-Cheng Yan3*, Jun Hua1,2*, and Qian Wang1,2,4*
1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (MOE), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
2Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Provincial Key Laboratory of Nuclear Science, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China
3School of Mathematics and Physics, Changzhou University, Changzhou 213164, China
4Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, China
Cite this article:   
Ying Zhang, Guangzhao He, Quanxing Ye et al  2024 Chin. Phys. Lett. 41 021301
Download: PDF(1785KB)   PDF(mobile)(1886KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structure of light diquarks plays a crucial role in formation of exotic hadrons beyond the conventional quark model, especially with regard to the line shapes of bottomed hadron decays. We study the two-body hadronic weak decays of bottomed baryons and bottomed mesons to probe the light diquark structure and to pin down the quark–quark correlations in the diquark picture. It is found that the light diquark does not favor a compact structure. For instance, the isoscalar diquark $[ud]$ in $\varLambda_{b}^{0}$ can be easily split and rearranged to form $\varSigma_{c}^{(*)}\bar{D}^{(*)}$ via the color-suppressed transition. This provides a hint that the hidden charm pentaquark states produced in $\varLambda^0_b$ decays could be the $\varSigma_{c}^{(*)}\bar{D}^{(*)}$ hadronic molecular candidates. This quantitative study resolves the apparent conflicts between the production mechanism and the molecular nature of these $P_c$ states observed in experiment.
Received: 25 October 2023      Editors' Suggestion Published: 07 March 2024
PACS:  13.25.Hw (Decays of bottom mesons)  
  14.20.Mr (Bottom baryons (|B|>0))  
  14.65.Fy (Bottom quarks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/021301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/021301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying Zhang
Guangzhao He
Quanxing Ye
Da-Cheng Yan
Jun Hua
and Qian Wang
[1] Gell M M 2019 Resonance 24 923
[2]Zweig G 1964 CERN-TH-401
[3] Choi S K et al. [Belle] 2003 Phys. Rev. Lett. 91 262001
[4] Uehara S et al. [Belle] 2006 Phys. Rev. Lett. 96 082003
[5] Aaltonen T et al. [CDF] 2009 Phys. Rev. Lett. 102 242002
[6] Aaij R et al. [LHCb] 2017 Phys. Rev. Lett. 118 022003
[7] Aaij R et al. [LHCb] 2019 Phys. Rev. Lett. 122 222001
[8] Olsen S L, Skwarnicki T, and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[9] Yuan C Z 2019 EPJ Web Conf. 202 01004
[10] Yuan C Z, and Olsen S L 2019 Nat. Rev. Phys. 1 480
[11] Brambilla N et al. 2020 Phys. Rep. 873 1
[12] Robertson G [LHCb] 2022 arXiv:2107.14560 [hep-ex]
[13] Fang B [LHCb] 2022 Nucl. Part. Phys. Proc. 318–323 66
[14] Chen S Z et al. 2023 Front. Phys. 18 44601
[15] Zhang J Q [CMS] 2023 Proc. Sci. 445 088
[16] Liu Z Q and Mitchell R E 2023 Sci. Bull. 68 2148
[17] Jia S, Xiong W T, and Shen C P 2023 Chin. Phys. Lett. 40 121301
[18] Wu J J, Molina R, Oset E, and Zou B S 2010 Phys. Rev. Lett. 105 232001
[19] Wang W L, Huang F, Zhang Z Y, and Zou B S 2011 Phys. Rev. C 84 015203
[20] Wu J J, Lee T S H, and Zou B S 2012 Phys. Rev. C 85 044002
[21] Xiao C W, Nieves J, and Oset E 2013 Phys. Rev. D 88 056012
[22] Karliner M and Rosner J L 2015 Phys. Rev. Lett. 115 122001
[23] Liu M Z et al. 2019 Phys. Rev. Lett. 122 242001
[24] Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, and Wang Q 2020 Phys. Rev. Lett. 124 072001
[25] Peng F Z, Yan M J, Sánchez M S, and Valderrama M P 2023 Phys. Lett. B 846 138207
[26] Yang Z Y, Peng F Z, Yan M J, Sánchez M S, and Valderrama M P 2022 arXiv:2211.08211 [hep-ph]
[27] Xing H Y, Liang J, Liu L M, Sun P, and Yang Y B 2022 arXiv:2210.08555 [hep-lat]
[28] Yalikun N, Lin Y H, Guo F K, Kamiya Y, and Zou B S 2021 Phys. Rev. D 104 094039
[29] Yan M J, Peng F Z, Sánchez M S, and Valderrama M P 2022 Eur. Phys. J. C 82 574
[30] Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, and Wang Q 2021 J. High Energy Phys. 2021(08) 157
[31] Kuang S Q, Dai L Y, Kang X W, and Yao D L 2020 Eur. Phys. J. C 80 433
[32] Pan Y W, Liu M Z, Peng F Z, Sánchez M S, Geng L S, and Valderrama M P 2020 Phys. Rev. D 102 011504
[33] Liu M Z, Wu T W, Sánchez M S, Valderrama M P, Geng L S, and Xie J J 2021 Phys. Rev. D 103 054004
[34] Wang F L, Chen R, Liu Z W, and Liu X 2020 Phys. Rev. C 101 025201
[35] Chen R, Sun Z F, Liu X, and Zhu S L 2019 Phys. Rev. D 100 011502
[36] Wang B, Meng L, and Zhu S L 2019 J. High Energy Phys. 2019(11) 108
[37] Chen H X, Chen W, and Zhu S L 2019 Phys. Rev. D 100 051501
[38] Guo F K, Jing H J, Meißner U G, and Sakai S 2019 Phys. Rev. D 99 091501
[39] He J 2019 Eur. Phys. J. C 79 393
[40] Guo Z H and Oller J A 2019 Phys. Lett. B 793 144
[41] Shimizu Y, Yamaguchi Y, and Harada M 2019 arXiv:1904.00587 [hep-ph]
[42] Xiao C J, Huang Y, Dong Y B, Geng L S, and Chen D Y 2019 Phys. Rev. D 100 014022
[43] Xiao C W, Nieves J, and Oset E 2019 Phys. Rev. D 100 014021
[44] Meng L, Wang B, Wang G J, and Zhu S L 2019 Phys. Rev. D 100 014031
[45] Wu J J, Lee T S H, and Zou B S 2019 Phys. Rev. C 100 035206
[46] Xiao C W, Nieves J, and Oset E 2019 Phys. Lett. B 799 135051
[47] Voloshin M B 2019 Phys. Rev. D 100 034020
[48] Sakai S, Jing H J, and Guo F K 2019 Phys. Rev. D 100 074007
[49] Yamaguchi Y, Garcia T H, Giachino A, Hosaka A, Santopinto E, Takeuchi S, and Takizawa M 2020 Phys. Rev. D 101 091502
[50] Lin Y H and Zou B S 2019 Phys. Rev. D 100 056005
[51] Gutsche T and Lyubovitskij V E 2019 Phys. Rev. D 100 094031
[52] Burns T J and Swanson E S 2019 Phys. Rev. D 100 114033
[53] Dong X K, Guo F K, and Zou B S 2021 Phys. Rev. Lett. 126 152001
[54] Liu X H, Wang Q, and Zhao Q 2016 Phys. Lett. B 757 231
[55] Burns T J and Swanson E S 2022 Phys. Rev. D 106 054029
[56] Workman R L et al. [PDG] 2022 Prog. Theor. Exp. Phys. 2022 083C01
[57] Leibovich A K, Ligeti Z, Stewart I W, and Wise M B 2004 Phys. Lett. B 586 337
[58] Fan Y Y, Wang W F, Cheng S, and Xiao Z J 2013 Phys. Rev. D 87 094003
[59] Zhang C Q, Li J M, Jia M K, and Rui Z 2022 Phys. Rev. D 105 073005
[60] Buchalla G, Buras A J, and Lautenbacher M E 1996 Rev. Mod. Phys. 68 1125
[61] Li R H, Lü C D, and Zou H 2008 Phys. Rev. D 78 014018
[62] Wang W, Yu F S, and Zhao Z X 2017 Eur. Phys. J. C 77 781
[63] Ke H W, Lu F, Liu X H, and Li X Q 2020 Eur. Phys. J. C 80 140
[64] Chang Q, Li X N, Li X Q, and Su F 2018 Chin. Phys. C 42 073102
[65] Qin Q, Li H, Lü C D, and Yu F S 2014 Phys. Rev. D 89 054006
[66] Jia C P, Wang D, and Yu F S 2020 Nucl. Phys. B 956 115048
[67] Huber T and Tetlalmatzi X G 2022 Eur. Phys. J. C 82 210
[68] Nakamura S X, Hosaka A, and Yamaguchi Y 2021 Phys. Rev. D 104 L091503
Related articles from Frontiers Journals
[1] Hao-Nan Wang, Li-Sheng Geng, Qian Wang, and Ju-Jun Xie. Molecular Nature of $X(3872)$ in $B^0 \to K^0 X(3872)$ and $B^+ \to K^+ X(3872)$ Decays[J]. Chin. Phys. Lett., 2023, 40(2): 021301
[2] CHANG Qin, HAN Lin, YANG Ya-Dong. Effects of Anomalous Tensor Couplings in Bs0Bs0 Mixing[J]. Chin. Phys. Lett., 2012, 29(3): 021301
[3] CHANG Qin, WANG Ru-Min, XU Yuan-Guo, CUI Xiao-Wei . Large Dimuon Asymmetry and a Non-Universal Z Boson in the BsBs System[J]. Chin. Phys. Lett., 2011, 28(8): 021301
[4] WANG Shuai-Wei, HUANG Jin-Shu, LÜ, Lin-Xia . Bs→ φπ0Decay in the Extra Down-Type Quark Model[J]. Chin. Phys. Lett., 2010, 27(12): 021301
[5] GAO Yuan-Ning, , HE Ji-Bo, , Patrick Robbe, Marie-HéléneSchune, YANG Zhen-Wei, . Experimental Prospects of the B_c Studies of the LHCb Experiment[J]. Chin. Phys. Lett., 2010, 27(6): 021301
[6] ZHANG Jin-Mei, WANG Guo-Li. Bs Semileptonic Decays to Ds and Ds* in Bethe--Salpeter Method[J]. Chin. Phys. Lett., 2010, 27(5): 021301
[7] WANG Shuai-Wei, SONG Tai-Ping, LÜ, Lin-Xia. B→ηK* and B→ΦKS Decays in the Two Higgs Doublet Model III[J]. Chin. Phys. Lett., 2008, 25(8): 021301
[8] LIU Shao-Min, JIN Hong-Ying. A Simply Modified Single Pole Scenario For B→K* Form Factors[J]. Chin. Phys. Lett., 2008, 25(7): 021301
[9] LIU Shao-Min, JIN Hong-Ying, LI Xue-Qian. Analysis on B→VV with the Flavour SU(3) Symmetry[J]. Chin. Phys. Lett., 2008, 25(7): 021301
[10] WANG Shuai-Wei, SONG Tai-Ping, LU Gong-Ru, ZHONG Zhi-Guo. Analysis of Bd→ψ KS CP Asymmetry in a Flavour Changing Z' Model[J]. Chin. Phys. Lett., 2007, 24(10): 021301
[11] Lü Cai-Dian, SHEN Yue-Long, WANG Wei. Role of Electromagnetic Dipole Operator in the Electroweak Penguin Dominated Vector Meson Decays of B Meson[J]. Chin. Phys. Lett., 2006, 23(10): 021301
[12] GAO Ying-Jia, ZHANG Yu-Jie, CHAO Kuang-Ta. Radiative Decays of Charmonium into Light Mesons[J]. Chin. Phys. Lett., 2006, 23(9): 021301
[13] WU Xiang-Yao, LI Zuo-Hong, CUI Jian-Ying, HUANG Tao. Impacts of the Soft-Gluon Exchanges on B →ππ Decays[J]. Chin. Phys. Lett., 2002, 19(11): 021301
[14] GUO Li-Bo, DU Dong-Sheng. Perturbative Quantum Chromodynamics Effects in Bc →PP Decays[J]. Chin. Phys. Lett., 2001, 18(4): 021301
[15] WU Yue-liang. Probing New Physics from CP Violation in Radiative B Decays[J]. Chin. Phys. Lett., 1999, 16(5): 021301
Viewed
Full text


Abstract