Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117505    DOI: 10.1088/0256-307X/41/11/117505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Rare-Earth Chalcogenides: An Inspiring Playground for Exploring Frustrated Magnetism
Mingtai Xie1,2, Weizhen Zhuo1,2, Yanzhen Cai1,2, Zheng Zhang2*, and Qingming Zhang1,2*
1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Mingtai Xie, Weizhen Zhuo, Yanzhen Cai et al  2024 Chin. Phys. Lett. 41 117505
Download: PDF(2829KB)   PDF(mobile)(2889KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The rare-earth chalcogenide $ARECh_{2}$ family ($A$ = alkali metal or monovalent ions, $RE$ = rare earth, $Ch$ = chalcogen) has emerged as a paradigmatic platform for studying frustrated magnetism on a triangular lattice. The family members exhibit a variety of ground states, from quantum spin liquid to exotic ordered phases, providing fascinating insight into quantum magnetism. Their simple crystal structure and chemical tunability enable systematic exploration of competing interactions in quantum magnets. Recent neutron scattering and thermodynamic studies have revealed rich phase diagrams and unusual excitations, refining theoretical models of frustrated systems. This review provides a succinct introduction to $ARECh_{2}$ research. It summarizes key findings on crystal structures, single-ion physics, magnetic Hamiltonians, ground states, and low-energy excitations. By highlighting current developments and open questions, we aim to catalyze further exploration and deeper physical understanding on this frontier of quantum magnetism.
Received: 26 September 2024      Review Published: 25 November 2024
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117505       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingtai Xie
Weizhen Zhuo
Yanzhen Cai
Zheng Zhang
and Qingming Zhang
[1] Anderson P W 1973 Mater. Res. Bull. 8 153
[2] Balents L 2010 Nature 464 199
[3] Lee P A 2008 Science 321 1306
[4] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[5] Fazekas P and Anderson P W 1974 Philos. Mag. 30 423
[6] Lee D H, Joannopoulos J D, Negele J W, and Landau D P 1984 Phys. Rev. Lett. 52 433
[7] Kawamura H and Miyashita S 1984 J. Phys. Soc. Jpn. 53 4138
[8] Yamamoto D, Marmorini G, and Danshita I 2014 Phys. Rev. Lett. 112 127203
[9] Zhu Z and White S R 2015 Phys. Rev. B 92 041105
[10] Miksch B, Pustogow A, Rahim M J, Bardin A A, Kanoda K, Schlueter J A, Hübner R, Scheffler M, and Dressel M 2021 Science 372 276
[11] Yamashita M, Nakata N, Kasahara Y, Sasaki T, Yoneyama N, Kobayashi N, Fujimoto S, Shibauchi T, and Matsuda Y 2009 Nat. Phys. 5 44
[12] Isono T, Terashima T, Miyagawa K, Kanoda K, and Uji S 2016 Nat. Commun. 7 13494
[13] Ni J M, Pan B L, Song B Q, Huang Y Y, Zeng J Y, Yu Y J, Cheng E J, Wang L S, Dai D Z, Kato R, and Li S Y 2019 Phys. Rev. Lett. 123 247204
[14] Itou T, Yamashita K, Nishiyama M, Oyamada A, Maegawa S, Kubo K, and Kato R 2011 Phys. Rev. B 84 094405
[15] Yamashita M, Sato Y, Tominaga T, Kasahara Y, Kasahara S, Cui H, Kato R, Shibauchi T, and Matsuda Y 2020 Phys. Rev. B 101 140407
[16] Zhong R, Guo S, Xu G, Xu Z, and Cava R J 2019 Proc. Natl. Acad. Sci. USA 116 14505
[17] Gao Y, Fan Y C, Li H, Yang F, Zeng X T, Sheng X L, Zhong R, Qi Y, Wan Y, and Li W 2022 npj Quantum Mater. 7 89
[18] Xiang J, Zhang C, Gao Y, Schmidt W, Schmalzl K, Wang C W, Li B, Xi N, Liu X Y, Jin H, Li G, Shen J, Chen Z, Qi Y, Wan Y, Jin W, Li W, Sun P, and Su G 2024 Nature 625 270
[19] Jackeli G and Khaliullin G 2008 Phys. Rev. Lett. 101 216804
[20] Chaloupka J, Jackeli G, and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[21] Li Y, Liao H, Zhang Z, Li S, Jin F, Ling L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z, and Zhang Q 2015 Sci. Rep. 5 16419
[22] Li Y, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P, and Zhang Q 2017 Phys. Rev. Lett. 118 107202
[23] Paddison J A M, Daum M, Dun Z L, Ehlers G, Liu Y H, Stone Matthew?B, Zhou H D, and Mourigal M 2017 Nat. Phys. 13 117
[24] Li Y, Bachus S, Liu B, Radelytskyi I, Bertin A, Schneidewind A, Tokiwa Y, Tsirlin A A, and Gegenwart P 2019 Phys. Rev. Lett. 122 137201
[25] Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P, and Zhang Q 2016 Phys. Rev. Lett. 117 097201
[26] Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G, and Zhang Q 2018 Chin. Phys. Lett. 35 117501
[27] Ding L, Manuel P, Bachus S, Grußler F, Gegenwart P, Singleton J, Johnson R D, Walker H C, Adroja D T, Hillier A D, and Tsirlin A A 2019 Phys. Rev. B 100 144432
[28] Bordelon M M, Kenney E, Liu C, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, and Wilson S D 2019 Nat. Phys. 15 1058
[29] Ranjith K M, Dmytriieva D, Khim S, Sichelschmidt J, Luther S, Ehlers D, Yasuoka H, Wosnitza J, Tsirlin A A, Kühne H, and Baenitz M 2019 Phys. Rev. B 99 180401
[30] Nuttall K M, Suggs C Z, Fischer H E, Bordelon M M, Wilson S D, and Frandsen B A 2023 Phys. Rev. B 108 L140411
[31] Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, and Doert T 2018 Phys. Rev. B 98 220409
[32] Wu J, Li J, Zhang Z, Liu C, Gao Y H, Feng E, Deng G, Ren Q, Wang Z, Chen R, Embs J, Zhu F, Huang Q, Xiang Z, Chen L, Wu Y, Choi E S, Qu Z, Li L, Wang J, Zhou H, Su Y, Wang X, Chen G, Zhang Q, and Ma J 2022 Quantum Front. 1 13
[33] Zhuo W, Zhang Z, Xie M, Zhang A, Ji J, Jin F, and Zhang Q 2024 Sci. Chin. Phys. Mech. & Astron. 67 107411
[34] Sarkar R, Schlender P, Grinenko V, Haeussler E, Baker P J, Doert T, and Klauss H H 2019 Phys. Rev. B 100 241116
[35] Sichelschmidt J, Schlender P, Schmidt B, Baenitz M, and Doert T 2019 J. Phys.: Condens. Matter 31 205601
[36] Häußler E, Sichelschmidt J, Baenitz M, Andrade E C, Vojta M, and Doert T 2022 Phys. Rev. Mater. 6 046201
[37] Ranjith K M, Luther S, Reimann T, Schmidt B, Schlender P, Sichelschmidt J, Yasuoka H, Strydom A M, Skourski Y, Wosnitza J, Kühne H, Doert T, and Baenitz M 2019 Phys. Rev. B 100 224417
[38] Zhang Z, Li J, Xie M, Zhuo W, Adroja D T, Baker P J, Perring T G, Zhang A, Jin F, Ji J, Wang X, Ma J, and Zhang Q 2022 Phys. Rev. B 106 085115
[39] Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Guo Y, Lu X, and Dai P 2021 Phys. Rev. X 11 021044
[40] Scheie A O, Lee M, Wang K, Laurell P, Choi E S, Pajerowski D, Zhang Q, Ma J, Zhou H D, Lee S, Thomas S M, Ajeesh M O, Rosa P F S, Chen A, Zapf V S, Heyl M, Batista C D, Dagotto E, Moore J E, and Tennant D A 2024 arXiv:2406.17773 [cond-mat.str-el]
[41] Scheie A O, Kamiya Y, Zhang H, Lee S, Woods A J, Ajeesh M O, Gonzalez M G, Bernu B, Villanova J W, Xing J, Huang Q, Zhang Q, Ma J, Choi E S, Pajerowski D M, Zhou H, Sefat A S, Okamoto S, Berlijn T, Messio L, Movshovich R, Batista C D, and Tennant D A 2024 Phys. Rev. B 109 014425
[42] Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J, and Zhang Q 2021 Phys. Rev. B 103 035144
[43] Zhang Z, Li J, Liu W, Zhang Z, Ji J, Jin F, Chen R, Wang J, Wang X, Ma J, and Zhang Q 2021 Phys. Rev. B 103 184419
[44] Scheie A O, Ghioldi E A, Xing J, Paddison J A M, Sherman N E, Dupont M, Sanjeewa L D, Lee S, Woods A J, Abernathy D, Pajerowski D M, Williams T J, Zhang S S, Manuel L O, Trumper A E, Pemmaraju C D, Sefat A S, Parker D S, Devereaux T P, Movshovich R, Moore J E, Batista C D, and Tennant D A 2024 Nat. Phys. 20 74
[45] Xie T, Eberharter A A, Xing J, Nishimoto S, Brando M, Khanenko P, Sichelschmidt J, Turrini A A, Mazzone D G, Naumov P G, Sanjeewa L D, Harrison N, Sefat A S, Normand B, Läuchli A M, Podlesnyak A, and Nikitin S E 2023 npj Quantum Mater. 8 48
[46] Xing J, Taddei K M, Sanjeewa L D, Fishman R S, Daum M, Mourigal M, dela Cruz C, and Sefat A S 2021 Phys. Rev. B 103 144413
[47] Avdoshenko S M, Kulbakov A A, Häußler E, Schlender P, Doert T, Ollivier J, and Inosov D S 2022 Phys. Rev. B 106 214431
[48] Xie T, Zhao N, Gozel S, Xing J, Avdoshenko S M, Taddei K M, Kolesnikov A I, Sanjeewa L D, Ma P, Harrison N, dela Cruz C, Wu L, Sefat A S, Chernyshev A L, Läuchli A M, Podlesnyak A, and Nikitin S E 2024 Phys. Rev. B 110 054445
[49] Zheng S, Wo H, Gu Y, Luo R L, Gu Y, Zhu Y, Steffens P, Boehm M, Wang Q, Chen G, and Zhao J 2023 Phys. Rev. B 108 054435
[50] Cantwell J R, Roof I P, Smith M D, and zur Loye H C 2011 Solid State Sci. 13 1006
[51] Hashimoto Y, Wakeshima M, Matsuhira K, Hinatsu Y, and Ishii Y 2002 Chem. Mater. 14 3245
[52] Blasse G 1966 J. Inorg. Nucl. Chem. 28 2444
[53] Hashimoto Y, Wakeshima M, and Hinatsu Y 2003 J. Solid State Chem. 176 266
[54] Dong B, Doi Y, and Hinatsu Y 2008 J. Alloys Compd. 453 282
[55] Seeger K and Hoppe R 1969 Z. Anorg. Allg. Chem. 365 22
[56] Brunn H and Hoppe R 1975 Z. Anorg. Allg. Chem. 417 213
[57] Ortiz B R, Bordelon M M, Bhattacharyya P, Pokharel G, Sarte P M, Posthuma L, Petersen T, Eldeeb M S, Granroth G E, Dela Cruz C R, Calder S, Abernathy D L, Hozoi L, and Wilson S D 2022 Phys. Rev. Mater. 6 084402
[58] Xing J, Mu S, Choi E S, and Jin R 2024 Commun. Mater. 5 45
[59] Ohtani T, Honjo H, and Wada H 1987 Mater. Res. Bull. 22 829
[60] Fábry J, Havlák L, Dušek M, Vaněk P, Drahokoupil J, and Jurek K 2014 Acta Crystallogr. Sect. B 70 360
[61] Ballestracci R 1965 Bulletin de la Société française de Minéralogie et de Cristallographie 88 207
[62]Ballestracci R and Lewy-Bertaut E F 1964 Bulletin de la Société francçaise de Minéralogie et de Cristallographie 87 512
[63] Sato M, Adachi G, and Shiokawa J 1984 Mater. Res. Bull. 19 1215
[64] Verheijen A W, van Enckevort W J P, Bloem J, and Giling L J 1975 J. Phys. Colloq. 36 C3-39
[65] Schleid T and Lissner F 1993 Eur. J. Solid State Inorg. Chem. 24 829
[66] Bronger W, Eyck J, Kruse K, and Schmitz D 1996 Eur. J. Solid State Inorg. Chem. 27 213
[67] Bronger W, Brüggemann W, von der Ahe M, and Schmitz D 1993 J. Alloys Compd. 200 205
[68] Dissanayaka Mudiyanselage R S, Wang H, Vilella O, Mourigal M, Kotliar G, and Xie W 2022 J. Am. Chem. Soc. 144 11933
[69] Xing J, Sanjeewa L D, Kim J, Meier W R, May A F, Zheng Q, Custelcean R, Stewart G R, and Sefat A S 2019 Phys. Rev. Mater. 3 114413
[70] Gray A K, Martin B R, and Dorhout P K 2003 Z. Kristallogr. - New Cryst. Struct. 218 20
[71] Xing J, Sanjeewa L D, May A F, and Sefat A S 2021 APL Mater. 9 111104
[72] Sanjeewa L D, Xing J, Taddei K M, and Sefat A S 2022 J. Solid State Chem. 308 122917
[73] Deng B, Ellis D E, and Ibers J A 2002 Inorg. Chem. 41 5716
[74] Deng B and Ibers J A 2005 Acta Crystallogr. Sect. E: Crystallogr. Commun. 61 i15
[75] Xing J, Sanjeewa L D, Kim J, Stewart G R, Du M H, Reboredo F A, Custelcean R, and Sefat A S 2019 ACS Mater. Lett. 2 71
[76] Lissner F and Schleid T 2003 Z. Anorg. Allg. Chem. 629 1895
[77] Eto K, Okamoto Y, Katayama N, Ishikawa H, Kindo K, and Takenaka K 2023 J. Phys. Soc. Jpn. 92 094707
[78] Zheng S, Gu Y, Gu Y, Kao Z, Wang Q, Wo H, Zhu Y, Liu F, Wu L, Sheng J, Chang J, Ohira-Kawamura S, Murai N, Niedermayer C, Mazzone D G, Chen G, and Zhao J 2024 Phys. Rev. B 109 075159
[79] Stöwe K, Napoli C, and Appel S 2003 Z. Anorg. Allg. Chem. 629 1925
[80] Keane P M and Ibers J A 1992 Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 48 1301
[81] Babo J M and Schleid T 2009 Z. Anorg. Allg. Chem. 635 1160
[82] Marquardt M A, Ashmore N A, and Cann D P 2006 Thin Solid Films 496 146
[83] Grußler F, Hemmida M, Bachus S, Skourski Y, Krug von Nidda H A, Gegenwart P, and Tsirlin A A 2023 Phys. Rev. B 107 224416
[84] Bastien G, Rubrecht B, Häußler E, Schlender P, Zangeneh Z, Avdoshenko S, Sarkar R, Alfonsov A, Luther S, Onykiienko Y A, Walker H C, Kühne H, Grinenko V, Guguchia Z, Kataev V, Klauss H H, Hozoi L, van den Brink J, Inosov D S, Büchner B, Wolter-Giraud A, and Doert T 2020 SciPost Phys. 9 041
[85] Kulbakov A A, Avdoshenko S M, Puente-Orench I, Deeb M, Doerr M, Schlender P, Doert T, and Inosov D S 2021 J. Phys.: Condens. Matter 33 425802
[86] Liu W, Yan D, Zhang Z, Ji J, Shi Y, Jin F, and Zhang Q 2021 Chin. Phys. B 30 107504
[87] Stevens K W H 1952 Proc. Phys. Soc. Sect. A 65 209
[88] Hutchings M 1964 Solid State Phys. 16 227
[89] Zangeneh Z, Avdoshenko S, van den Brink J, and Hozoi L 2019 Phys. Rev. B 100 174436
[90] Scheie A, Garlea V O, Sanjeewa L D, Xing J, and Sefat A S 2020 Phys. Rev. B 101 144432
[91] Liu W, Zhang Z, Yan D, Li J, Zhang Z, Ji J, Jin F, Shi Y, and Zhang Q 2024 Chin. Phys. Lett. 41 097503
[92] Bordelon M M, Liu C, Posthuma L, Sarte P M, Butch N P, Pajerowski D M, Banerjee A, Balents L, and Wilson S D 2020 Phys. Rev. B 101 224427
[93] Pai Y Y, Marvinney C E, Liang L, Xing J, Scheie A, Puretzky A A, Halász G B, Li X, Juneja R, Sefat A S, Parker D, Lindsay L, and Lawrie B J 2022 J. Mater. Chem. C 10 4148
[94] Bordelon M M, Wang X, Pajerowski D M, Banerjee A, Sherwin M, Brown C M, Eldeeb M S, Petersen T, Hozoi L, Rößler U K, Mourigal M, and Wilson S D 2021 Phys. Rev. B 104 094421
[95] Thalmeier P 1984 J. Phys. C 17 4153
[96] Adroja D T, del Moral A, de la Fuente C, Fraile A, Goremychkin E A, Taylor J W, Hillier A D, and Fernandez-Alonso F 2012 Phys. Rev. Lett. 108 216402
[97] Loewenhaupt M, Rainford B D, and Steglich F 1979 Phys. Rev. Lett. 42 1709
[98] Dieke G H, Crosswhite H M, and Dunn B 1961 J. Opt. Soc. Am. 51 820
[99] Petrov D N and Angelov B M
Related articles from Frontiers Journals
[1] Wei Xu, Gaoting Lin, Mingfang Shu, Jinlong Jiao, Jinfeng Zhu, Qingyong Ren, Manh Duc Le, Xuan Luo, Yuping Sun, Yi Liu, Zhe Qu, Haidong Zhou, Shang Gao, and Jie Ma. Spin Dynamics and Phonons in Chromites CoCr$_{2}$O$_{4}$ and MnCr$_{2}$O$_{4}$[J]. Chin. Phys. Lett., 2024, 41(11): 117505
[2] Meng Wang, Hai-Hu Wen, Tao Wu, Dao-Xin Yao, and Tao Xiang. Normal and Superconducting Properties of La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(7): 117505
[3] Haiyuan Zou and Wei Wang. Gapless Spin Liquid and Nonlocal Corner Excitation in the Spin-$1/2$ Heisenberg Antiferromagnet on Fractal[J]. Chin. Phys. Lett., 2023, 40(5): 117505
[4] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 117505
[5] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 117505
[6] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 117505
[7] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 117505
[8] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 117505
[9] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 117505
[10] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 117505
[11] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 117505
[12] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 117505
[13] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 117505
[14] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 117505
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 117505
Viewed
Full text


Abstract