CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fermionized Dual Vortex Theory for Magnetized Kagomé Spin Liquid |
Si-Yu Pan1 and Gang v. Chen1,2* |
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
|
|
Cite this article: |
Si-Yu Pan and Gang v. Chen 2024 Chin. Phys. Lett. 41 117504 |
|
|
Abstract Inspired by the recent quantum oscillation measurement on the kagomé lattice antiferromagnet in finite magnetic fields, we raise the question about the physical contents of the emergent fermions and the gauge fields if the $U(1)$ spin liquid is relevant for the finite-field kagomé lattice antiferromagnet. Clearly, the magnetic field is non-perturbative in this regime, and the finite-field state has no direct relation with the $U(1)$ Dirac spin liquid proposal at zero field. We here consider the fermionized dual vortex liquid state as one possible candidate theory to understand the magnetized kagomé spin liquid. Within the dual vortex theory, the $S^z$ magnetization is the emergent $U(1)$ gauge flux, and the fermionized dual vortex is the emergent fermion. The magnetic field polarizes the spin component that modulates the $U(1)$ gauge flux for the fermionized vortices and generates the quantum oscillation. Within the mean-field theory, we discuss the gauge field correlation, the vortex–antivortex continuum and the vortex thermal Hall effect.
|
|
Received: 26 August 2024
Published: 14 November 2024
|
|
PACS: |
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
|
|
|
[1] | Zheng G, Zhu Y, Chen K W, Kang B, Zhang D, Jenkins K, Chan A, Zeng Z, Xu A, Valenzuela O A, Blawat J, Singleton J, Lee P A, Li S, and Li L 2023 arXiv:2310.07989 [cond-mat.str-el] | [2] | Motrunich O I 2006 Phys. Rev. B 73 155115 | [3] | Norman M R 2016 Rev. Mod. Phys. 88 041002 | [4] | Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205 | [5] | Hermele M, Ran Y, Lee P A, and Wen X G 2008 Phys. Rev. B 77 224413 | [6] | Nishimoto S, Shibata N, and Hotta C 2013 Nat. Commun. 4 2287 | [7] | Fisher M P A 2004 Strong Interactions in Low Dimensions (Berlin: Springer) p 419 | [8] | Alicea J, Motrunich O I, Hermele M, and Fisher M P A 2005 Phys. Rev. B 72 064407 | [9] | Alicea J, Motrunich O I, and Fisher M P A 2005 Phys. Rev. Lett. 95 247203 | [10] | Alicea J, Motrunich O I, and Fisher M P A 2006 Phys. Rev. B 73 174430 | [11] | Ryu S, Motrunich O I, Alicea J, and Fisher M P A 2007 Phys. Rev. B 75 184406 | [12] | Alicea J and Fisher M P A 2007 Phys. Rev. B 75 144411 | [13] | Zhang X T, Gao Y H, Liu C, and Chen G 2020 Phys. Rev. Res. 2 013066 | [14] | Chen G 2017 Phys. Rev. B 96 195127 | [15] | Hermele M, Fisher M P A, and Balents L 2004 Phys. Rev. B 69 064404 | [16] | Durst A C and Lee P A 2000 Phys. Rev. B 62 1270 | [17] | Lee P A and Nagaosa N 2013 Phys. Rev. B 87 064423 | [18] | Lee P A and Nagaosa N 1992 Phys. Rev. B 46 5621 | [19] | Zhang X T, Gao Y H, and Chen G 2024 Phys. Rep. 1070 1 | [20] | Yang Y F, Zhang G M, and Zhang F C 2020 Phys. Rev. Lett. 124 186602 | [21] | Essin A M and Hermele M 2014 Phys. Rev. B 90 121102 | [22] | Zeng Z Y, Zhou C K, Zhou H L, Han L K, Chi R Z, Li K, Kofu M, Nakajima K, Wei Y, Zhang W L, Mazzone D G, Meng Z Y, and Li S L 2023 arXiv:2310.11646 [cond-mat.str-el] | [23] | Sachdev S 1992 Phys. Rev. B 45 12377 | [24] | Wang F and Vishwanath A 2006 Phys. Rev. B 74 174423 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|